在直三棱柱ABC—A′B′C′中,∠BAC=90°,AB=BB′=1,直線B′C與平面ABC成30°的角.(如圖所示)

(1)求點C′到平面AB′C的距離;(2)求二面角B-B′C—A的余弦值.


解析:

(1)∵ABC—A′B′C′是直三棱柱,∴A′C′∥AC,AC平面AB′C,∴A′C′∥平面AB′C,于是C′到平面AB′C的距離等于點A′到平面AB′C的距離,作A′M⊥AB′于M.由AC⊥平面AB′A′得平面AB′C⊥平面AB′A′,∴A′M⊥平面AB′C,A′M的長是A′到平面AB′C的距離.

∵AB=B′B=1,⊥B′CB=30°,∴B′C=2,BC=,AB′=,A′M=.即C′到平面AB′C的距離為

(2)作AN⊥BC于N,則AN⊥平面B′BCC′,作NQ⊥B′C于Q,則AQ⊥B′C,∴∠AQN是所求二面角的平面角,AN=,AQ==1.∴sin∠AQN=,cos∠AQN=.

說明  利用異面直線上兩點間的距離公式,也可以求二面角的大小,如圖,AB=BB′=1,∴AB′=,又∠B′CB=30°,

∴BC=,B′C=2,AC=.作AM⊥B′C于M,BN⊥B′C于N,則AM=1,BN=,

CN=,CM=1,∴MN=.∵BN⊥B′C,AM⊥B′C,∴BN與AM所成的角等于二面角B—B′C—A的平面角.設(shè)為θ.由AB2=AM2+BN2+MN2-2AM×BN×cosθ得cosθ=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中點.
(Ⅰ)求證:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大小;
(Ⅲ)求直線B′D與平面AB′C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•瀘州一模)如圖,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
2
a
,則AB′與側(cè)面AC′所成角的大小為
30°
30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有兩個動點E,F(xiàn),且EF=a (a為常數(shù)).
(Ⅰ)在平面ABC內(nèi)確定一條直線,使該直線與直線CE垂直;
(Ⅱ)判斷三棱錐B-CEF的體積是否為定值.若是定值,求出這個三棱錐的體積;若不是定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直線B′C與平面ABC成30°角.
(1)求證:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱ABC-A′B′C′中,點D是BC的中點,∠ACB=90°,AC=BC=1,AA′=2,
(1)欲過點A′作一截面與平面AC'D平行,問應(yīng)當(dāng)怎樣畫線,寫出作法,并說明理由;
(2)求異面直線BA′與 C′D所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案