【題目】某城市理論預(yù)測(cè)2007年到2011年人口總數(shù)與年份的關(guān)系如表所示
年份2007+x(年) | 0 | 1 | 2 | 3 | 4 |
人口數(shù)y(十萬(wàn)) | 5 | 7 | 8 | 11 | 19 |
(1)請(qǐng)根據(jù)表提供的數(shù)據(jù),求最小二乘法求出y關(guān)于x的線(xiàn)性回歸方程;
(2)據(jù)此估計(jì)2012年該城市人口總數(shù).
參考公式: .
【答案】
(1)解:∵ ,
, ∴
故y關(guān)于x的線(xiàn)性回歸方程為
(2)解:當(dāng)x=5時(shí), ,即
據(jù)此估計(jì)2012年該城市人口總數(shù)約為196萬(wàn)
【解析】(1)先求出年份2007+x和人口數(shù)y的平均值,即得到樣本中心點(diǎn),利用最小二乘法得到線(xiàn)性回歸方程的系數(shù),根據(jù)樣本中心點(diǎn)在線(xiàn)性回歸直線(xiàn)上,得到a的值,得到線(xiàn)性回歸方程;(2)當(dāng)x=5代入回歸直線(xiàn)方程,即可求得 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的奇函數(shù)f(x),當(dāng)x∈(﹣∞,0)時(shí),f(x)=﹣x2+mx﹣1.
(1)求f(x)的解析式;
(2)若方程f(x)=0有五個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知斜三棱柱, , , 在底面上的射影恰為的中點(diǎn),且.
(1)求證: 平面;
(2)求到平面的距離;
(3)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,其前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)有正整數(shù),使得成等差數(shù)列,求的值;
(3)設(shè),對(duì)于給定的,求三個(gè)數(shù)經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過(guò)點(diǎn)D作AC的平行線(xiàn)DE,交BA的延長(zhǎng)線(xiàn)于點(diǎn)E.求證:
(1)△ABC≌△DCB;
(2)DEDC=AEBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓.
(1)若橢圓的離心率為,且點(diǎn)在橢圓上,①求橢圓的方程;
②設(shè)分別為橢圓的右頂點(diǎn)和上頂點(diǎn),直線(xiàn)和與軸和軸相交于點(diǎn),求直線(xiàn)的方程;
(2)設(shè) 過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩點(diǎn),且均在的右側(cè), ,求橢圓離心率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車(chē)美容公司為吸引顧客,推出優(yōu)惠活動(dòng):對(duì)首次消費(fèi)的顧客,按元/次收費(fèi), 并注冊(cè)成為會(huì)員, 對(duì)會(huì)員逐次消費(fèi)給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:
消費(fèi)次第 | 第次 | 第次 | 第次 | 第次 | 次 |
收費(fèi)比例 |
該公司從注冊(cè)的會(huì)員中, 隨機(jī)抽取了位進(jìn)行統(tǒng)計(jì), 得到統(tǒng)計(jì)數(shù)據(jù)如下:
消費(fèi)次第 | 第次 | 第次 | 第次 | 第次 | 第次 |
頻數(shù) |
假設(shè)汽車(chē)美容一次, 公司成本為元, 根據(jù)所給數(shù)據(jù), 解答下列問(wèn)題:
(1)估計(jì)該公司一位會(huì)員至少消費(fèi)兩次的概率;
(2)某會(huì)員僅消費(fèi)兩次, 求這兩次消費(fèi)中, 公司獲得的平均利潤(rùn);
(3)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率, 設(shè)該公司為一位會(huì)員服務(wù)的平均利潤(rùn)為元, 求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從參加高三化學(xué)得分訓(xùn)練的學(xué)生中隨機(jī)抽出60名學(xué)生,將其化學(xué)成績(jī)(均為整數(shù))分成六段、、…、后得到部分頻率分布直方圖(如圖).
觀(guān)察圖形中的信息,回答下列問(wèn)題:
(1)求分?jǐn)?shù)在內(nèi)的頻率,并補(bǔ)全頻率分布直方圖;
(2)據(jù)此估計(jì)本次考試的平均分;
(3)若從60名學(xué)生中隨機(jī)抽取2人,抽到的學(xué)生成績(jī)?cè)?/span>內(nèi)記0分,在內(nèi)記1分,在內(nèi)記2分,用表示抽取結(jié)束后的總記分,求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=2|x﹣m|﹣1(m為實(shí)數(shù))為偶函數(shù),記a=f(log0.53),b=f(log25),c=f(2m),則a,b,c的大小關(guān)系為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com