(2013•樂(lè)山一模)已知一個(gè)空間幾何體的三視圖如圖所示,其中正視圖、側(cè)視圖都是由半圓和矩形組成,根據(jù)圖中標(biāo)出的尺寸(單位:cm).可得這個(gè)幾何體的體積是( 。
分析:三視圖可知該幾何體是由一個(gè)圓柱和半球組成的組成體,圓柱的底面直徑等于半球的直徑為2,圓柱的高h(yuǎn)=1,代入圓柱的體積公式和半球的體積公式,即可得到答案.
解答:解:由已知中的三視圖可得:
該幾何體是由一個(gè)圓柱和半球組成的組成體
由圖中所示的數(shù)據(jù)可得:
圓柱的底面直徑等于半球的直徑為2
則半徑R=1
圓柱的高h(yuǎn)=1
∴V圓柱=πR2h=π×12×1=πcm3
V半球=
1
2
×
4
3
πR3=
2
3
π
cm3
故該幾何體的體積V=π+
2
3
π
=
3
cm3

故選C.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是由三視圖求體積,其中根據(jù)已知中的三視圖判斷出幾何體的形狀是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•樂(lè)山一模)一個(gè)體積為12
3
的正三棱柱的三視圖如圖所示,則這個(gè)三棱柱的側(cè)視圖的面積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•樂(lè)山一模)函數(shù)f(x)=-(cosx)1g|x|的部分圖象是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•樂(lè)山一模)濟(jì)南高新區(qū)引進(jìn)一高科技企業(yè),投入資金720萬(wàn)元建設(shè)基本設(shè)施,第一年各種運(yùn)營(yíng)費(fèi)用120萬(wàn)元,以后每年增加40萬(wàn)元;每年企業(yè)銷(xiāo)售收入500萬(wàn)元,設(shè)f(n)表示前n年的純收入.(f(n)=前n年的總收入-前n年的總支出-投資額)
(Ⅰ)從第幾年開(kāi)始獲取純利潤(rùn)?
(Ⅱ)若干年后,該企業(yè)為開(kāi)發(fā)新產(chǎn)品,有兩種處理方案:
①年平均利潤(rùn)最大時(shí),以480萬(wàn)元出售該企業(yè);
②純利潤(rùn)最大時(shí),以160萬(wàn)元出售該企業(yè);
問(wèn)哪種方案最合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•樂(lè)山一模)已知命題p:“?x∈[1,2],使x2-a<0成立”,若¬p是真命題,則實(shí)數(shù)a的取值范圍是
a≤1
a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•樂(lè)山一模)已知數(shù)列{an}的前n項(xiàng)和Sn=
32
(an-1),n∈N*

(1)求{an}的通項(xiàng)公式;
(2)若對(duì)于任意的n∈N*,有k•an≥4n+1成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案