用數(shù)學(xué)歸納法證明++…+[(2n-1)(2n)2-2n(2n+1)2]=-n(n+1)(4n+3).
【答案】分析:用數(shù)學(xué)歸納法證明問題的步驟是:第一步,驗證當(dāng)n=n時命題成立,第二步假設(shè)當(dāng)n=k時命題成立,那么再證明當(dāng)n=k+1時命題也成立.關(guān)鍵是第二步中要充分用上歸納假設(shè)的結(jié)論,否則會導(dǎo)致錯誤.
解答:證明:當(dāng)n=1時,左邊=-14,右邊=-1•2•7=-14,等式成立
假設(shè)當(dāng)n=k時等式成立,
即有(1•22-2•32)+(3•42-4•52)++[(2k-1)(2k)2-2k(2k+1)2]
=-k(k+1)(4k+3)
那么當(dāng)n=k+1時,
(1•22-2•32)+(3•42-4•52)++[(2k-1)(2k)2-2k(2k+1)2]
+[(2k+1)(2k+2)2-(2k+2)(2k+3)2]
=-k(k+1)(4k+3)-2(k+1)[4k2+12k+9-4k2-6k-2]
=-(k+1)[4k2+3k+2(6k+7)]=-(k+1)[4k2+15k+14]
=-(k+1)(k+2)(4k+7)=-(k+1)[(k+1)+1][4(k+1)+3].
這就是說,當(dāng)n=k+1時等式也成立.
根據(jù)以上論證可知等式對任何n∈N都成立.
點(diǎn)評:本題考查數(shù)學(xué)歸納法的思想,應(yīng)用中要注意的是要用上歸納假設(shè).