精英家教網 > 高中數學 > 題目詳情
5、若a即是2x和x2的等差中項,又是2x和x2的等比中項,則a的值為( 。
分析:根據a即是2x和x2的等差中項,又是2x和x2的等比中項,寫出關系式,得到關于兩個未知數的方程組,解方程組即可.
解答:解:∵a是2x和x2的等差中項,
∴2a=2x+x2   ①
∵a是2x和x2的等比中項,
∴a2=2x•x2    ②
把①兩邊平方代入②
有x2-4x+4=0,
∴x=2,
把x=2代入①得到a=4
故選B.
點評:本題考查等比數列和等差數列的性質,在解題時兩個關系式很好寫出,但是注意方程組的解法,把一個平方以后再代入求解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

給出下列四個命題:
①“向量
a
,
b
的夾角為銳角”的充要條件是“
a
b
>0”;
②如果f(x)=lgx,則對任意的x1、x2∈(0,+∞),且x1≠x2,都有f(
x1+x2
2
)>
f(x1)+f(x2)
2
;
③設f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數,若對任意x∈[a,b],都有|f(x)-g(x)|≤1成立,則稱f(x)和g(x)在[a,b]上是“密切函數”,區(qū)間[a,b]稱為“密切區(qū)間”.若f(x)=x2-3x+4與g(x)=2x-3在[a,b]上是“密切函數”,則其“密切區(qū)間”可以是[2,3];
④記函數y=f(x)的反函數為y=f-1(x),要得到y(tǒng)=f-1(1-x)的圖象,可以先將y=f(x)的圖象關于直線y=x做對稱變換,再將所得的圖象關于y軸做對稱變換,再將所得的圖象沿x軸向左平移1個單位,即得到y(tǒng)=f-1(1-x)的圖象.
其中真命題的序號是
 
.(請寫出所有真命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

若一系列函數的解析式和值域相同,但其定義域不同,則稱這些函數為“同效函數”,例如函數y=x2,x∈[1,2]與函數y=x2,x∈[-2,-1]即為“同效函數”.請你找出下面函數解析式中能夠被用來構造“同效函數”的是(  )

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若a即是2x和x2的等差中項,又是2x和x2的等比中項,則a的值為( 。
A.0B.4C.0或4D.4或-4

查看答案和解析>>

科目:高中數學 來源:2013屆黑龍江虎林高中高二下學期期中理科數學試卷(解析版) 題型:解答題

已知函數f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結合構造函數和導數的知識來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數,

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

同步練習冊答案