【題目】已知函數(shù)是定義在R上的奇函數(shù),

(1)求實數(shù)的值;

(2)如果對任意,不等式恒成立,求實數(shù)的取值范圍

【答案】(1)1(2)

【解析】

(1)利用函數(shù)為奇函數(shù)的定義即可得到m值;(2)先判斷出函數(shù)f(x)R上單調遞增,利用奇偶性和單調性將不等式轉為恒成立,然后變量分離,轉為求函數(shù)最值問題,最后解不等式即可得a的范圍.

解:(1)方法1:因為是定義在R上的奇函數(shù),

所以,即,

,即

方法2:因為是定義在R上的奇函數(shù),所以,即,

,檢驗符合要求.

(2),

任取,則 ,

因為,所以,所以,

所以函數(shù)R上是增函數(shù).

注:此處交代單調性即可,可不證明

因為,且是奇函數(shù)

所以,

因為R上單調遞增,所以,

對任意都成立,

由于=,其中,

所以,即最小值為3

所以,

,解得,

,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某中學為提升學生的數(shù)學學習能力,進行了主題分別為“運算”、“推理”、“想象”、“建!彼膱龈傎.規(guī)定:每場競賽前三名得分分別為、、,且、),選手的最終得分為各場得分之和.最終甲、乙、丙三人包攬了每場競賽的前三名,在四場競賽中,已知甲最終得分為分,乙最終得分為分,丙最終得分為分,且乙在“運算”這場競賽中獲得了第一名,那么“運算”這場競賽的第三名是( )

A.B.C.D.甲和丙都有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究性學習小組調查研究學生使用智能手機對學習的影響,部分統(tǒng)計數(shù)據(jù)如表經計算,則下列選項正確的是( )

使用智能手機

不使用智能手機

合計

學習成績優(yōu)秀

4

8

12

學習成績不優(yōu)秀

16

2

18

合計

20

10

30

附表

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

A. 有99.5%的把握認為使用智能手機對學習有影響

B. 有99.5%的把握認為使用智能手機對學習無影響

C. 有99.9%的把握認為使用智能手機對學習有影響

D. 有99.9%的把握認為使用智能手機對學習無影響

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中, ,,,,,點上,且,將沿折起,使得平面平面 (如圖), 中點.

(1)求證: 平面;

(2)在線段上是否存在點,使得平面?若存在,求的值,并加以證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).

1.47

20.6

0.78

2.35

0.81

-19.3

16.2

表中

(1)根據(jù)散點圖判斷,哪一個更適宜作燒水時間關于開關旋鈕旋轉的弧度數(shù)的回歸方程類型?(不必說明理由)

(2)根據(jù)判斷結果和表中數(shù)據(jù),建立關于的回歸方程;

(3)若旋轉的弧度數(shù)與單位時間內煤氣輸出量成正比,那么為多少時,燒開一壺水最省煤氣?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當橋上的車流密度達到200/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數(shù).

1)當0≤x≤200時,求函數(shù)vx)的表達式;

2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數(shù),單位:輛/小時)fx=xvx)可以達到最大,并求出最大值.(精確到1/小時).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省每年損失耕地20萬畝,每畝耕地價值24000元,為了減小耕地損失,決定按耕地價格的t%征收耕地占用稅,這樣每年的耕地損失可減少t萬畝,為了既減少耕地的損失又保證此項稅收一年不少于9000萬元,t變動的范圍是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求函數(shù)的單調性;

(2)當時,若函數(shù)的極值為e,求的值;

(3)當時,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4—4:坐標系與參數(shù)方程]

在直角坐標系中,已知曲線的參數(shù)方程為 為參數(shù)以原點為極點x軸正半軸為極軸建立極坐標系,直線的極坐標方程為:,直線的極坐標方程為

Ⅰ)寫出曲線的極坐標方程,并指出它是何種曲線;

Ⅱ)設與曲線交于兩點,與曲線交于兩點,求四邊形面積的取值范圍.

查看答案和解析>>

同步練習冊答案