【題目】設(shè)橢圓()的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為.已知.
(1)求橢圓的離心率;
(2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段為直徑的圓經(jīng)過點(diǎn),經(jīng)過原點(diǎn)的直線與該圓相切,求直線的斜率.
【答案】(1);(2)直線的斜率為或.
【解析】試題(1)設(shè)橢圓的右焦點(diǎn)的坐標(biāo)為,由已知,可得,結(jié)合,可得,從而可求得橢圓的離心率;(2)在(1)的基礎(chǔ)上,可先利用及數(shù)量積的坐標(biāo)運(yùn)算求出點(diǎn)的坐標(biāo),再求出以線段為直徑的圓的方程(圓心坐標(biāo)和半徑),最后設(shè)經(jīng)過原點(diǎn)的與該圓相切的直線的方程為,由圓心到切線的距離等于半徑,列方程,解方程即可得求得直線的斜率.
(1)設(shè)橢圓的右焦點(diǎn)的坐標(biāo)為.由,可得,又,則,∴橢圓的離心率.
(2)由(1)知, ,故橢圓方程為.設(shè).由, ,有, .由已知,有,即.又,故有①
又∵點(diǎn)在橢圓上,故②
由①和②可得.而點(diǎn)不是橢圓的頂點(diǎn),故,代入①得,即點(diǎn)的坐標(biāo)為.設(shè)圓的圓心為,則,,進(jìn)而圓的半徑.設(shè)直線的斜率為,依題意,直線的方程為.由與圓相切,可得,即,整理得,解得.∴直線的斜率為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,過點(diǎn)且與軸不重合的直線與相交于兩點(diǎn),點(diǎn),直線與直線交于點(diǎn).
(1)當(dāng)垂直于軸時(shí),求直線的方程;
(2)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體的棱長為,,,,分別是,,,的中點(diǎn),則過且與平行的平面截正方體所得截面的面積為______,和該截面所成角的正弦值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A 為橢圓的下頂點(diǎn),過 A 的直線 l 交拋物線于B、C 兩點(diǎn),C 是 AB 的中點(diǎn).
(I)求證:點(diǎn)C的縱坐標(biāo)是定值;
(II)過點(diǎn)C作與直線 l 傾斜角互補(bǔ)的直線l交橢圓于M、N兩點(diǎn),求p的值,使得△BMN的面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正整數(shù)n都可以唯一表示為 ①的形式,其中m為非負(fù)整數(shù),(,),.試求①中的數(shù)列嚴(yán)格單調(diào)遞增或嚴(yán)格單調(diào)遞減的所有正整數(shù)n的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】5G網(wǎng)絡(luò)是第五代移動(dòng)通信網(wǎng)絡(luò),其峰值理論傳輸速度可達(dá)每8秒1GB,比4G網(wǎng)絡(luò)的傳輸速度快數(shù)百倍.舉例來說,一部1G的電影可在8秒之內(nèi)下載完成.隨著5G技術(shù)的誕生,用智能終端分享3D電影、游戲以及超高畫質(zhì)(UHD)節(jié)目的時(shí)代正向我們走來.某手機(jī)網(wǎng)絡(luò)研發(fā)公司成立一個(gè)專業(yè)技術(shù)研發(fā)團(tuán)隊(duì)解決各種技術(shù)問題,其中有數(shù)學(xué)專業(yè)畢業(yè),物理專業(yè)畢業(yè),其它專業(yè)畢業(yè)的各類研發(fā)人員共計(jì)1200人.現(xiàn)在公司為提高研發(fā)水平,采用分層抽樣抽取400人按分?jǐn)?shù)對工作成績進(jìn)行考核,并整理得如上頻率分布直方圖(每組的頻率視為概率).
(1)從總體的1200名學(xué)生中隨機(jī)抽取1人,估計(jì)其分?jǐn)?shù)小于50的概率;
(2)研發(fā)公司決定對達(dá)到某分?jǐn)?shù)以上的研發(fā)人員進(jìn)行獎(jiǎng)勵(lì),要求獎(jiǎng)勵(lì)研發(fā)人員的人數(shù)達(dá)到30%,請你估計(jì)這個(gè)分?jǐn)?shù)的值;
(3)已知樣本中有三分之二的數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員分?jǐn)?shù)不低于70分,樣本中不低于70分的數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員人數(shù)與物理及其它專業(yè)畢業(yè)的研發(fā)人員的人數(shù)和相等,估計(jì)總體中數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
(本題滿分15分)已知m>1,直線,
橢圓,分別為橢圓的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過右焦點(diǎn)時(shí),求直線的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),,
的重心分別為.若原點(diǎn)在以線段
為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com