某廠生產(chǎn)產(chǎn)品x件的總成本c(x)=1200+(萬(wàn)元),已知產(chǎn)品單價(jià)P(萬(wàn)元)與產(chǎn)品件數(shù)x滿足:P2=,生產(chǎn)100件這樣的產(chǎn)品單價(jià)為50萬(wàn)元,產(chǎn)量定為多少件時(shí)總利潤(rùn)最大?
【答案】分析:利用100件產(chǎn)品單價(jià)50萬(wàn)求出常量k,確定出p關(guān)于x的解析式,利潤(rùn)=單價(jià)-成本.總利潤(rùn)l(x)=p-c.求出l的導(dǎo)數(shù),令導(dǎo)數(shù)=0時(shí),函數(shù)有最值求出可得.
解答:解:由題意知有:,解得:k=25×104,
∴P==;
∴總利潤(rùn)L(x)=x•-1200-=500-1200-,
∴L′(x)=250-
令L′(x)=0則有:x=25(件)
∴當(dāng)x=25件時(shí),總利潤(rùn)最大.
點(diǎn)評(píng):考查學(xué)生利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某廠生產(chǎn)產(chǎn)品x件的總成本c(x)=1200+
2
75
x3
(萬(wàn)元),已知產(chǎn)品單價(jià)P(萬(wàn)元)與產(chǎn)品件數(shù)x滿足:P2=
k
x
,生產(chǎn)100件這樣的產(chǎn)品單價(jià)為50萬(wàn)元,產(chǎn)量定為多少件時(shí)總利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某廠生產(chǎn)產(chǎn)品x件的總成本c(x)=1200+
2
75
x3(萬(wàn)元),已知產(chǎn)品單價(jià)P(萬(wàn)元)與產(chǎn)品件數(shù)x滿足:p2=
k
x
,生產(chǎn)100件這樣的產(chǎn)品單價(jià)為50萬(wàn)元.
(1)設(shè)產(chǎn)量為x件時(shí),總利潤(rùn)為L(zhǎng)(x)(萬(wàn)元),求L(x)的解析式;
(2)產(chǎn)量x定為多少件時(shí)總利潤(rùn)L(x)(萬(wàn)元)最大?并求最大值(精確到1萬(wàn)元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某廠生產(chǎn)產(chǎn)品x件的總成本c(x)=
1
12
x3
(萬(wàn)元),已知產(chǎn)品單價(jià)P(萬(wàn)元) 與產(chǎn)品件數(shù)x滿足:P2=
k
x
,生產(chǎn)1件這樣的產(chǎn)品單價(jià)為16萬(wàn)元.
(1)設(shè)產(chǎn)量為x件時(shí),總利潤(rùn)為L(zhǎng)(x)(萬(wàn)元),求L(x)的解析式;
(2)產(chǎn)量x定為多少件時(shí)總利潤(rùn)L(x)(萬(wàn)元)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆湖北省四校高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

某廠生產(chǎn)產(chǎn)品x件的總成本c(x)=(萬(wàn)元),已知產(chǎn)品單價(jià)P(萬(wàn)元) 與產(chǎn)品件數(shù)x滿足:,生產(chǎn)1件這樣的產(chǎn)品單價(jià)為16萬(wàn)元.

   (1)設(shè)產(chǎn)量為件時(shí),總利潤(rùn)為(萬(wàn)元),求的解析式;

   (2)產(chǎn)量定為多少件時(shí)總利潤(rùn)(萬(wàn)元)最大?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案