執(zhí)行如圖所示的程序框圖(其中[x]表示不超過x的最大整數(shù)),則輸出的S值為
 

考點:程序框圖
專題:算法和程序框圖
分析:根據(jù)所給數(shù)值判定是否滿足判斷框中的條件,不滿足然后執(zhí)行循環(huán)語句,一旦滿足條件就退出循環(huán),輸出結(jié)果.
解答: 解:n=0不滿足判斷框中的條件,n=1,s=1,
n=1不滿足判斷框中的條件,n=2,s=2,
n=2不滿足判斷框中的條件,n=3,s=3,
n=3不滿足判斷框中的條件,n=4,s=5,
n=4不滿足判斷框中的條件,n=5,s=7,
n=5滿足判斷框中的條件
輸出的結(jié)果為7,
故答案為:7
點評:本題主要考查了循環(huán)結(jié)構(gòu),是直到型循環(huán),當(dāng)滿足條件,執(zhí)行循環(huán),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖三棱柱ABC-A1B1C1的底面是邊長為3的正三角形,側(cè)棱AA1垂直于底面ABC1;AA1=
3
3
2
,D是CB延長線上一點,且BD=BC,
(1)求證:直線BC1∥平面AB1D
(2)若在幾何體A1B1C1-ACD內(nèi)隨機取一點,求該點落在三棱錐C1-ABB1內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-1|+|2x+1|
(Ⅰ)解不等式f(x)<3;
(Ⅱ)若不等式f(x)≤|
1
2
a-1|解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x2+a
x
,且f(1)=3.
(1)求證:函數(shù)f(x)在[
2
2
,+∞)
上單調(diào)遞增;
(2)設(shè)關(guān)于x的方程f(x)=x+b的兩根為x1,x2,是否存在實數(shù)t,使得不等式2m2-t•m+4≥|x1-x2|對?b∈[2,
13
]
?m∈[
1
2
,2]
恒成立?若存在,求實數(shù)t的取值范圍;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)(x∈R)滿足f(x+1)+f(x)=0,當(dāng)x∈[0,1]時,f(x)=x
1
2008
,則f(
11
5
)、f(
7
5
)、f(
22
5
)由大到小的排列是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,網(wǎng)格紙是邊長為1的小正方形,在其上用粗線畫出了某多面體的三視圖,則該多面體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x3-2x+4在點(1,3)處的切線方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)是奇函數(shù)且滿足f(
3
2
-x)=f(x),f(-2)=5,數(shù)列a1=-1,且
Sn
n
=2×
an
n
+1(其中Sn為{an}的前n項和),則f(a6)+f(a7)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)y=5x2+mx+4在區(qū)間(-∞,-1]上是減函數(shù),在區(qū)間[-1,+∞)上是增函數(shù),則m的值為
 

查看答案和解析>>

同步練習(xí)冊答案