考點:數(shù)列與不等式的綜合
專題:綜合題,壓軸題,等差數(shù)列與等比數(shù)列,不等式的解法及應(yīng)用
分析:(1)直接由已知b3=3結(jié)合題目給出的數(shù)列遞推式求b1的值;
(2)由bn+2=-bn+1-bn,bn+3=-bn+2-bn+1,作差后得到bn+3=bn,進(jìn)一步利用作差法證明數(shù)列{bnbn-1bn-2+n}是等差數(shù)列;
(3)由Tn+1=Tn•bn+1=Tn-1bnbn+1=Tn-2bn-1bnbn+1=…=b1b2b3…bn+1,得到當(dāng)n≥2時,Tn=b1b2b2…bn,然后推出數(shù)列{T3n-2+T3n-1+T3n)(n∈N*)是等比數(shù)列,求出其前n項和Sn=T1+T2+T3+…+Tn,再對n分當(dāng)n=3k(k∈N*)時,當(dāng)n=3k-1(k∈N*)時,當(dāng)n=3k-2(k∈N*)時具體求和,最后利用放縮法得答案.
解答:
(1)解:∵b
n+2=-b
n+1-b
n,
∴b
3=-b
2-b
1=-3b
1=3,
∴b
1=-1;
(2)證明:∵b
n+2=-b
n+1-b
n ①,
∴b
n+3=-b
n+2-b
n+1 ②,
②-①得b
n+3=b
n,
∴(b
n+1b
n+2b
n+3+n+1)-(b
nb
n+1b
n+2+n)=b
n+1b
n+2(b
n+3-b
n)+1=1為常數(shù),
∴數(shù)列{b
nb
n+1b
n+2+n}是等差數(shù)列;
(3)解:∵T
n+1=T
n•b
n+1=T
n-1b
nb
n+1=T
n-2b
n-1b
nb
n+1=…=b
1b
2b
3…b
n+1,
當(dāng)n≥2時,T
n=b
1b
2b
2…b
n(*),
當(dāng)n=1時,T
1=b
1適合(*)式
∴T
n=b
1b
2b
3…b
n(n∈N
*).
∵b
1=-
,b
2=2b
1=-1,
b
3=-3b
1=
,b
n+3=b
n,
∴T
1=b
1=-
,T
2=T
1b
2=
,
T
3=T
2b
3=
,T
4=T
3b
4=T
3b
1=
T
1,
T
5=T
4b
5=T
2b
3b
4b
5=T
2b
1b
2b
3=
T
2,
T
6=T
5b
6=T
3b
4b
5b
6=T
3b
1b
2b
3=
T
3,
…
T
3n+1+T
3n+2+T
3n+3=T
3n-2b
3n-1b
3nb
3n+1+
T
3n-1b
3nb
3n+1b
3n+2+T
3nb
3n+1b
3n+2b
3n+3=T
3n-2b
1b
2b
3+T
3n-1b
1b
2b
3+T
3nb
1b
2b
3=
(T
3n-2+T
3n-1+T
3n),
∴數(shù)列{T
3n-2+T
3n-1+T
3n)(n∈N
*)是等比數(shù)列,
首項T
1+T
2+T
3=
且公比q=
,
記S
n=T
1+T
2+T
3+…+T
n,
①當(dāng)n=3k(k∈N
*)時,
S
n=(T
1+T
2+T
3)+(T
4+T
5+T
6)…+(T
3k-2+T
3k-1+T
3k)
=
=3[1-()k].
∴
≤S
n<3;
②當(dāng)n=3k-1(k∈N
*)時,
S
n=(T
1+T
2+T
3)+(T
4+T
5+T
6)+…+(T
3k-2+T
3k-1+T
3k)-T
3k=
3[1-()k]-(b1b2b3)k=3-4•()k.
∴0≤S
n<3;
③當(dāng)n=3k-2(k∈N
*)時,
S
n=(T
1+T
2+T
3)+(T
4+T
5+T
6)+…+(T
3k-2+T
3k-1+T
3k)-T
3k-1-T
3k=
3[1-()k]-(b1b2b3)k-1b1b2-(b1b2b3)k=
3[1-()k]-()k-1-()k=
3-•()k.
∴
-≤Sn<3.
綜上得:
-≤Sn<3.
則p
≤-且q≥3.
∴q-p的最小值為
.
點評:本題考查了等差關(guān)系的判斷與應(yīng)用,考查了等比關(guān)系的判斷,訓(xùn)練了數(shù)列的分組求和與等比數(shù)列的前n項和,考查了數(shù)列不等式的解法,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,是壓軸題.