【題目】已知四棱錐中,底面是直角梯形,,,,,又平面,且,點(diǎn)在棱上且.

1)求證:;

2)求與平面所成角的正弦值;

3)求二面角的大小.

【答案】1)答案見(jiàn)解析(23

【解析】

1)推導(dǎo)出,從而平面,進(jìn)而,由此能證明平面,即可求得答案;

2)由(1)可得:平面,所以與平面所成角,求出長(zhǎng),即可求得答案;

3)連結(jié),于點(diǎn),,從而平面平面,進(jìn)而平面,過(guò)于點(diǎn),連結(jié),則,則為二面角的平面角,即可求得答案.

1)取中點(diǎn)為,連接

,

底面是直角梯形,

,

四邊形是平行四邊形

可得,中點(diǎn)為,

根據(jù)直角三角形性質(zhì)可得:為直角三角形,且

平面

平面

平面

(2)由(1)可得:平面

與平面所成角

為直角三角形,,

,

為等腰直角三角形

中,

與平面所成角的正弦值.

3)連結(jié),于點(diǎn),,如圖:

平面,

平面平面,

平面

過(guò)于點(diǎn),連結(jié),,

為二面角的平面角,

,

,

,

二面角的大小為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中“sinA>sinB”是“cosA<cosB”的( )

A充分不必要條件 B必要不充分條件

C充要條件 D既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是水資源匱乏國(guó)家,節(jié)約用水是每個(gè)中國(guó)公民應(yīng)有的意識(shí).為了保護(hù)水資源,提倡節(jié)約用水,某城市對(duì)居民生活用水實(shí)行階梯水價(jià),計(jì)費(fèi)方法如下表:

每戶每月用水量

水價(jià)

不超過(guò)12的部分

3/

超過(guò)12但不超過(guò)18的部分

6/

超過(guò)18的部分

9/

1)該城市居民小張家月用水量記為,應(yīng)交納水費(fèi)y(元),試建立yx的函數(shù)解析式,并作出其圖像;

2)若小張家十月份交納水費(fèi)90元,求他家十月份的用水量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),解不等式

2)若關(guān)于的方程在區(qū)間上恰有一個(gè)實(shí)數(shù)解,求的取值范圍;

3)設(shè),若存在使得函數(shù)在區(qū)間上的最大值和最小值的差不超過(guò)1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn)M(0,2),N(2,0),直線lkxy2k20(k為常數(shù))

(1)若點(diǎn)MN到直線l的距離相等,求實(shí)數(shù)k的值;

(2)對(duì)于l上任意一點(diǎn)P,∠MPN恒為銳角,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校有1200名學(xué)生,隨機(jī)抽出300名進(jìn)行調(diào)查研究,調(diào)查者設(shè)計(jì)了一個(gè)隨機(jī)化裝置,這是一個(gè)裝有大小、形狀和質(zhì)量完全相同的10個(gè)紅球,10個(gè)綠球和10個(gè)白球的袋子.調(diào)查中有兩個(gè)問(wèn)題:

問(wèn)題1:你的陽(yáng)歷生日月份是不是奇數(shù)?

問(wèn)題2:你是否抽煙?

每個(gè)被調(diào)查者隨機(jī)從袋中摸出1個(gè)球(摸出后再放回袋中).若摸到紅球就如實(shí)回答第一個(gè)問(wèn)題,若摸到綠球,則不回答任何問(wèn)題;若摸到白球,則如實(shí)回答第二個(gè)問(wèn)題.所有回答“是”的調(diào)查者只需往一個(gè)盒子中放一個(gè)小石子,回答“否”的被調(diào)查者什么也不用做.最后收集回來(lái)53個(gè)小石子,估計(jì)該學(xué)校吸煙的人數(shù)有多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).

(1)證明:上單調(diào)遞增;

(2)函數(shù),如果總存在,對(duì)任意都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面ABCD為矩形,點(diǎn)E在線段PA上,平面BDE

求證:;

是等邊三角形,,平面平面ABCD,四棱錐的體積為,求點(diǎn)E到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若存在實(shí)數(shù)對(duì),使得等式對(duì)定義域中的任意都成立,則稱函數(shù)是“型函數(shù)”.

(1)若函數(shù)是“型函數(shù)”,且,求出滿足條件的實(shí)數(shù)對(duì);

(2)已知函數(shù).函數(shù)是“型函數(shù)”,對(duì)應(yīng)的實(shí)數(shù)對(duì),當(dāng)時(shí),.若對(duì)任意時(shí),都存在,使得,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案