【題目】給出四個命題
(1)若sin2A=sin2B,則△ABC為等腰三角形;
(2)若sinA=cosB,則△ABC為直角三角形;
(3)若sin2A+sin2B+sin2C<2,則△ABC為鈍角三角形;
(4)若cos(A-B)cos(B-C)cos(C-A)=1,則△ABC為正三角形.
以上正確命題的是_______.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|x-3|-|x+1|,x∈R.
(1)解不等式f(x)<-1;
(2)設函數(shù)g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x-1|+|x-2a|.
(1)當a=1時,求f(x)≤3的解集;
(2)當x∈[1,2]時,f(x)≤3恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知冪函數(shù)(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調增函數(shù).
(1)求函數(shù)f(x)的解析式;
(2)設函數(shù),若g(x)>2對任意的x∈R恒成立,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+a2.
(I)若f(x)在x=1處有極值10,求a,b的值;
(II)若當a=-1時,f(x)<0在x∈[1,2]恒成立,求b的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】本著健康、低碳的生活理念,租用公共自行車的人越來越多.租用公共自行車的收費標準是每車每次不超過兩小時免費,超過兩小時的部分每小時2元(不足1小時的部分按1小時計算).甲乙兩人相互獨立租車(各租一車一次).設甲、乙不超過兩小時還車的概率分別為, ;兩小時以上且不超過三小時還車的概率分別為, ;兩人租車時間都不會超過四小時.
(1)求出甲、乙所付租車費用相同的概率;
(2)設甲、乙兩人所付的租車費用之和為隨機變量,求隨機變量的概率分布和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a是實數(shù),函數(shù)f(x)= (x-a).
(1)求函數(shù)f(x)的單調區(qū)間;
(2)設g(a)為f(x)在區(qū)間[0,2]上的最小值.
①寫出g(a)的表達式;
②求a的取值范圍,使得-6≤g(a)≤-2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下是解決數(shù)學問題的思維過程的流程圖:
在此流程圖中,①、②兩條流程線與“推理與證明”中的思維方法匹配正確的是( )
A. ①—分析法,②—反證法 B. ①—分析法,②—綜合法
C. ①—綜合法,②—反證法 D. ①—綜合法,②—分析法
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)圖象上點處的切線方程與直線平行(其中),.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在()上的最小值;
(Ⅲ)對一切, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com