(14分) 已知點(diǎn)是
且
(1)設(shè)實數(shù)t滿足=0,求t的值;
(2)試用,
表示
。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012屆浙江省寧波萬里國際學(xué)校高三上期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知、
是橢圓
的兩個焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)
在橢圓上,線段
與
軸的交點(diǎn)
滿足
;⊙O是以F1F2為直徑的圓,一直線l:
與⊙O相切,并與橢圓交于不同的兩點(diǎn)A、B.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)且滿足
時,求△AOB面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三11月月考理科數(shù)學(xué)試卷 題型:解答題
(本小題滿分14分)
已知點(diǎn)是圓
上任意一點(diǎn),點(diǎn)
與點(diǎn)
關(guān)于原點(diǎn)對稱。線段
的中垂線
分別與
交于
兩點(diǎn).
(1)求點(diǎn)的軌跡
的方程;
(2)斜率為的直線
與曲線
交于
兩點(diǎn),若
(
為坐標(biāo)原點(diǎn)),試求直線
在
軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年廣東省揭陽市高二上學(xué)期期末檢測數(shù)學(xué)理卷 題型:解答題
(本題14分)已知點(diǎn)(1,)是函數(shù)
且
)的圖象上一點(diǎn),等比數(shù)列
的前
項和為
,數(shù)列
的首項為
,且前
項和
滿足
-
=
+
(
).
(1)求數(shù)列和
的通項公式;
(2)若數(shù)列{前
項和為
,問
的最小正整數(shù)
是多少? .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三上學(xué)期期中考試數(shù)學(xué)文卷 題型:解答題
(本小題滿分14分) 已知點(diǎn)是⊙
:
上的任意一點(diǎn),過
作
垂直
軸于
,動點(diǎn)
滿足
.
(1)求動點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動點(diǎn)
的軌跡上是否存在兩個不重合的兩點(diǎn)
、
,使
(O是坐標(biāo)原點(diǎn)),若存在,求出直線
的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)
已知點(diǎn)是⊙
:
上的任意一點(diǎn),過
作
垂直
軸于
,動點(diǎn)
滿足
。
(1)求動點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動點(diǎn)
的軌跡上是否存在兩個不重合的兩點(diǎn)
、
,使
(O是坐標(biāo)原點(diǎn)),若存在,求出直線
的方程,若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com