()平面區(qū)域的面積為                   。


解析:

:由,這表示如下四個(gè)圓的內(nèi)部及邊界:

,由于這四個(gè)圓均相外切,故平面區(qū)域的面積為。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知集合A={(x,y)|
x-y≤2
x≥0
y≤0
,則集合B={(2x+y,x-2y)|(x,y)∈A}表示的平面區(qū)域的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,不等式
x+y≥0
x-y≥0
x≤a
(a為常數(shù))表示的平面區(qū)域的面積為8,則
x+y+2
x+3
的最小值為
6-4
2
6-4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•梅州二模)己知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
2
2
,不等式
|x|
a
+
|y|
b
≤1
所表示的平面區(qū)域的面積為16
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的左項(xiàng)點(diǎn)為A,上頂點(diǎn)為B,圓M過(guò)A、B兩點(diǎn).當(dāng)圓心M與原點(diǎn)O的距離最小時(shí),求圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果由約束條件
0≤y≤x
y≤4-x
t≤x≤t+2.(0<t<2)
所確定的平面區(qū)域的面積為S=f(t),則S的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•營(yíng)口二模)由不等式組
x+y-2≥0
x+2y-4≤0
y≥0
所圍成的平面區(qū)域的面積為
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案