【題目】已知函數(shù) f(x)=asinx﹣bcosx(a,b為常數(shù),a≠0,x∈R)在x= 處取得最小值,則函數(shù)g(x)=f( ﹣x)是( )
A.偶函數(shù)且它的圖象關(guān)于點(π,0)對稱
B.奇函數(shù)且它的圖象關(guān)于點(π,0)對稱
C.奇函數(shù)且它的圖象關(guān)于點( ,0)對稱
D.偶函數(shù)且它的圖象關(guān)于點( ,0)對稱
【答案】B
【解析】解:∵函數(shù) f(x)=asinx﹣bcosx (a,b為常數(shù),a≠0,x∈R)在x= 處取得最小值,最小正周期為2π,
則f( ﹣x)=f(x﹣ ),則函數(shù)g(x)=f( ﹣x)=f(x﹣ ).
故g(x)可以看成把f(x)的圖象向右平移 個單位得到的,即x= 是g(x)的圖象的一個對稱軸.
由于g( )=f( )對應(yīng)g(x)的最小值,而對稱軸和對稱中心最少相差 T= ,故(0,0)和(π,0)是g(x)的對稱中心,
故選:B.
根據(jù)題意可得g(x)=f( ﹣x)=f(x﹣ ),故g(x)可以看成把f(x)的圖象向右平移 個單位得到的,再根據(jù)對稱軸和對稱中心最少相差 T,得出結(jié)論.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過作圓柱的截面交下底面于,四邊形ABCD是正方形.
(1)求證;
(2)求四棱錐E-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】人口問題是當(dāng)今世界各國普遍關(guān)注的問題.認(rèn)識人口數(shù)量的變化規(guī)律,可以為有效控制人口增長提供依據(jù).早在1798年,英國經(jīng)濟(jì)學(xué)家馬爾薩斯(T.R.Malthus,1766—1834)就提出了自然狀態(tài)下的人口增長模型: ,其中x表示經(jīng)過的時間, 表示x=0時的人口,r表示人口的平均增長率.
下表是1950―1959年我國人口數(shù)據(jù)資料:
如果以各年人口增長率的平均值作為我國這一時期的人口增長率,用馬爾薩斯人口增長模型建立我國這一時期的具體人口增長模型,某同學(xué)利用圖形計算器進(jìn)行了如下探究:
由此可得到我國1950―1959年我國這一時期的具體人口增長模型為____________. (精確到0.001)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
(1)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;
(2)若, 且在上的最小值為-2,求m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點.
(1)求證:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值為,求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知坐標(biāo)平面上的凸四邊形 ABCD 滿足 =(1, ), =(﹣ ,1),則凸四邊形ABCD的面積為; 的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f(x)=x﹣ln x﹣2.
(Ⅰ)求函數(shù) f ( x)的最小值;
(Ⅱ)如果不等式 x ln x+(1﹣k)x+k>0(k∈Z)在區(qū)間(1,+∞)上恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)f(x)=,其中2<m<2,m∈Z,滿足:
(1)f(x)是區(qū)間(0,+∞)上的增函數(shù);
(2)對任意的x∈R,都有f(x) +f(x)=0.
求同時滿足條件(1)、(2)的冪函數(shù)f(x)的解析式,并求x∈[0,3]時,f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)f(x)=xa的圖象經(jīng)過點.
(1)求函數(shù)f(x)的解析式,并判斷奇偶性;
(2)判斷函數(shù)f(x)在(﹣,0)上的單調(diào)性,并用單調(diào)性定義證明.
(3)作出函數(shù)f(x)在定義域內(nèi)的大致圖象(不必寫出作圖過程).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com