【題目】如圖,一個底面水平放置的倒圓錐形容器,它的軸截面是正三角形,容器內(nèi)有一定量的水,水深為. 若在容器內(nèi)放入一個半徑為 1 的鐵球后,水面所在的平面恰好經(jīng)過鐵球的球心(水沒有溢出),則的值為( )

A. B. C. D.

【答案】B

【解析】

ODAC,垂足為D,則球的半徑rOD1,此時OA2r2,底面半徑R2×tan30°,可得半球和水的體積和,從而得水的體積,將水的體積用h表示出來,進而求出h

ODAC,垂足為D,則球的半徑rOD1,此時OA2r2,底面半徑R2×tan30°=,當錐體內(nèi)水的高度為h時,底面半徑為h×tan30°=h,

設加入小球后水面以下的體積為V′,原來水的體積為V,球的體積為V

所以水的體積為:,

解得:

故選:B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓經(jīng)過,,,三點,是線段上的動點,,是過點且互相垂直的兩條直線,其中軸于點,交圓、兩點.

(1)若,求直線的方程;

(2)若是使恒成立的最小正整數(shù),求三角形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某村莊對村內(nèi)50名老年人、年輕人每年是否體檢的情況進行了調(diào)查,統(tǒng)計數(shù)據(jù)如表所示:

每年體檢

未每年體檢

合計

老年人

7

年輕人

6

合計

50

已知抽取的老年人、年輕人各25名

(Ⅰ)請完成上面的列聯(lián)表;

(Ⅱ)試運用獨立性檢驗思想方法,判斷能否有99%的把握認為每年是否體檢與年齡有關?

附:,

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某射擊游戲規(guī)定:每位選手最多射擊3次;射擊過程中若擊中目標,方可進行下一次射擊,否則停止射擊;同時規(guī)定第i(i=1,2,3)次射擊時擊中目標得4﹣i分,否則該次射擊得0分.已知選手甲每次射擊擊中目標的概率為0.8,且其各次射擊結果互不影響.
(Ⅰ)求甲恰好射擊兩次的概率;
(Ⅱ)設該選手甲停止射擊時的得分總和為ξ,求隨機變量ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)處取得極值,求的值;

(Ⅱ)設,若函數(shù)在定義域上為單調(diào)增函數(shù),求的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓軸交于兩點(的上方),直線

(1)當時,求直線被圓截得的弦長;

(2)若,點為直線上一動點(不在軸上),直線的斜率分別為,直線與圓的另一交點分別

①問是否存在實數(shù),使得成立?若存在,求出的值;若不存在,說明理由;

②證明:直線經(jīng)過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從含有兩件正品和一件次品的3件產(chǎn)品中每次任取一件,連續(xù)取兩次,求取出的兩件產(chǎn)品中恰有一件是次品的概率.

(1)每次取出不放回;

(2)每次取出后放回.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線 =1(a>0,b>0)的左、右焦點分別為F1、F2離心率為e.過F2的直線與雙曲線的右支交于A、B兩點,若△F1AB是以A為直角頂點的等腰直角三角形,則e2的值是(
A.1+2
B.3+2
C.4﹣2
D.5﹣2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調(diào)查喜歡看書是否與性別有關,某校調(diào)查小組就“是否喜歡看書”這個問題,在全校隨機調(diào)研了100名學生.

(1)完成下列列聯(lián)表:

喜歡看書

不喜歡看書

合計

女生

15

50

男生

25

合計

100

(2)能否在犯錯率不超過0.025的前提下認為“喜歡看書與性別有關”.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中

查看答案和解析>>

同步練習冊答案