斜率為2的直線l上有三點P1(2,3),P2(1,b),P3(a,-5),則a-2b=________.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)過點A(1,2)、B(3,0),并且直線m:2x-3y=0平分圓C.
(1)求圓C的方程;
(2)過點D(0,3),且斜率為k的直線l與圓C有兩個不同的交點E、F,若|EF|≥2
3
,求k的取值范圍;
(3)若圓C關于點(
3
2
,1)
對稱的曲線為圓Q,設M(x1,y1)、P(x2,y2)(x1≠±x2)是圓Q上的兩個動點,點M關于原點的對稱點為M1,點M關于x軸的對稱點為M2,如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問m•n是否為定值?若是求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線c:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一個焦點與拋物線y2=4x的焦點重合,且雙曲線的離心率為
5

(1)求雙曲線的方程;
(2)若有兩個半徑相同的圓c1,c2,它們的圓心都在x軸上方且分別在雙曲線c的兩漸近線上,過雙曲線的右焦點且斜率為-1的直線l與圓c1,c2都相切,求兩圓c1,c2圓心連線斜率的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•湖南模擬)設橢圓C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右焦點分別為F1、F2,上頂點為A,離心率為
1
2
,在x軸負半軸上有一點B,且
BF2
=2
BF1

(1)若過A、B、F2三點的圓恰好與直線x-
3
y-3=0
相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,在x軸上是否存在點P(m,0),使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•山東)橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)
的左右焦點分別是F1,F(xiàn)2,離心率為
3
2
,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,連接PF1,PF2,設∠F1PF2的角平分線PM交C的長軸于點M(m,0),求m的取值范圍;
(3)在(2)的條件下,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點,設直線PF1,PF2的斜率分別為k1,k2,若k≠0,試證明
1
kk1
+
1
kk2
為定值,并求出這個定值.

查看答案和解析>>

同步練習冊答案