為喜迎馬年新春佳節(jié),某商場(chǎng)在進(jìn)行抽獎(jiǎng)促銷(xiāo)活動(dòng),當(dāng)日在該店消費(fèi)滿(mǎn)500元的顧客可參加抽獎(jiǎng).抽獎(jiǎng)箱中有大小完全相同的4個(gè)小球,分別標(biāo)有字“馬”“上”“有”“錢(qián)”.顧客從中任意取出1個(gè)球,記下上面的字后放回箱中,再?gòu)闹腥稳?個(gè)球,重復(fù)以上操作,最多取4次,并規(guī)定若取出“錢(qián)”字球,則停止取球.獲獎(jiǎng)規(guī)則如下:依次取到標(biāo)有“馬”“上”“有”“錢(qián)”字的球?yàn)橐坏泉?jiǎng);不分順序取到標(biāo)有“馬”“上”“有”“錢(qián)”字的球,為二等獎(jiǎng);取到的4個(gè)球中有標(biāo)有“馬”“上”“有”三個(gè)字的球?yàn)槿泉?jiǎng).
(Ⅰ)求分別獲得一、二、三等獎(jiǎng)的概率;
(Ⅱ)設(shè)摸球次數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,相互獨(dú)立事件的概率乘法公式
專(zhuān)題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:(Ⅰ)根據(jù)依次取到標(biāo)有“馬”“上”“有”“錢(qián)”字的球?yàn)橐坏泉?jiǎng);不分順序取到標(biāo)有“馬”“上”“有”“錢(qián)”字的球,為二等獎(jiǎng);取到的4個(gè)球中有標(biāo)有“馬”“上”“有”三個(gè)字的球?yàn)槿泉?jiǎng),可求分別獲得一、二、三等獎(jiǎng)的概率;
(Ⅱ)ξ的可能取值為1、2、3、4,分別求出相對(duì)應(yīng)的概率,由此能求出ζ的分布列和數(shù)學(xué)期望.
解答: 解:(Ⅰ)設(shè)“摸到一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)”分別為事件A,B,C.
則P(A)=
1
4
×
1
4
×
1
4
×
1
4
=
1
256
…(2分)
P(B)=
A
3
3
-1
44
=
5
256
…(4分)
三等獎(jiǎng)的情況有:“馬,馬,上,有”;“馬,上,上,有”;“馬,上,有,有”三種情況.
P(C)=
1
4
×
1
4
×
1
4
×
1
4
×
A
2
4
×3=
9
64
…(6分)
(Ⅱ)設(shè)摸球的次數(shù)為ξ,則ξ的可能取值為1、2、3、4.
P(ξ=1)=
1
4
,P(ξ=2)=
3
4
×
1
4
=
3
16
,P(ξ=3)=
3
4
×
3
4
×
1
4
=
9
64

P(ξ=4)=1-P(ξ=1)-P(ξ=2)-P(ξ=3)=
27
64
…(10分)
故取球次數(shù)ξ的分布列為
ξ 1 2 3 4
P
1
4
3
16
9
64
27
64
Eξ=1×
1
4
+2×
3
16
+3×
9
64
+4×
27
64
=
175
64
 …(12分)
點(diǎn)評(píng):本題考查求離散型隨機(jī)變量的分布列以及數(shù)學(xué)期望等有關(guān)知識(shí).求出隨機(jī)變量ζ所有可能的取值的概率,是解題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c∈R,a+b+c=0,abc>0,T=
1
a
+
1
b
+
1
c
,則( 。
A、T>0B、T<0
C、T=0D、T≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=3,a2=6,an+2=an+1-an,那么a6=(  )
A、-2B、-3C、-6D、-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了普及環(huán)保知識(shí)增強(qiáng)環(huán)保意識(shí),某校從理工類(lèi)專(zhuān)業(yè)甲班抽取60人,從文史類(lèi)乙班抽取50人參加環(huán)保知識(shí)測(cè)試
(1)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷你是否有99%的把握認(rèn)為環(huán)保知識(shí)與專(zhuān)業(yè)有關(guān)
優(yōu)秀 非優(yōu)秀 總計(jì)
甲班
乙班 30
總計(jì) 60
(2)為參加上級(jí)舉辦的環(huán)保知識(shí)競(jìng)賽,學(xué)校舉辦預(yù)選賽,預(yù)選賽答卷滿(mǎn)分100分,優(yōu)秀的同學(xué)得60分以上通過(guò)預(yù)選,非優(yōu)秀的同學(xué)得80分以上通過(guò)預(yù)選,若每位同學(xué)得60分以上的概率為
1
2
,得80分以上的概率為
1
3
,現(xiàn)已知甲班有3人參加預(yù)選賽,其中1人為優(yōu)秀學(xué)生,若隨機(jī)變量X表示甲班通過(guò)預(yù)選的人數(shù),求X的分布列及期望E(X).附:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,n=a+b+c+d
P(K2>k0 0.100 0.050 0.025 0.010 0.005
k0 2.706 3.841 5.024 6.635 7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若a+c=
2
b.
(1)求證:B≤
π
2
;
(2)當(dāng)
AB
BC
=-2,b=2
3
時(shí),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,若an2-an-12=k(n≥2,n∈N*,k為常數(shù)),則稱(chēng){an}為X數(shù)列.
(Ⅰ)若數(shù)列{bn}是X數(shù)列,b1=1,b2=3,寫(xiě)出所有滿(mǎn)足條件的數(shù)列{bn}的前4項(xiàng);
(Ⅱ)證明:一個(gè)等比數(shù)列為X數(shù)列的充要條件是公比為1或-1;
(Ⅲ)若X數(shù)列{cn}滿(mǎn)足c1=2,c2=2
2
,cn>0,設(shè)數(shù)列{
1
cn
}的前n項(xiàng)和為T(mén)n.是否存在正整數(shù)p,q,使不等式Tn
pn+q
-1對(duì)一切n∈N*都成立?若存在,求出P,q的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex,g(x)=ax2(a∈R,a≠0).
(1)求函數(shù)y=
g(x)
f(x)
的單調(diào)區(qū)間;
(2)①已知A(x1,y1),B(x2,y2)(x1<x2)為函數(shù)y=g(x)圖象上的兩點(diǎn),y=g′(x)為y=g(x)的導(dǎo)函數(shù),若g′(x0)=
y1-y2
x1-x2
,求證:x0∈(x1,x2);
②類(lèi)比函數(shù)y=g(x),①中的結(jié)論在函數(shù)y=f(x)中是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=cos(2x+
π
3
)+1-2cos2x.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且a=1,b+c=2,f(A)=-
1
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿(mǎn)足
x-2y+2≥0
x+y-2≥0
x≤3
,則z=2x-y的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案