已知m=2
-a2+2a,n=log
2(a
2+a+
),則m
n.(填“>”,“<”或“=”)
考點:不等式比較大小
專題:計算題,不等式的解法及應(yīng)用
分析:利用配方法,分別確定m,n的范圍,即可得出結(jié)論.
解答:
解:∵m=2
-a2+2a=
2-(a-1)2+1≤2,(a=1時,取等號),
n=log
2(a
2+a+
)=log
2[(a+
)
2+4]≥2,(a=-
時,取等號),
∴m>n.
故答案為:>.
點評:本題考查大小比較,考查配方法的運用,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
假設(shè)每個人在任何一個月出生是等可能的,計算在一個有10人的集體中,至少有2個人生日在同一個月的概率.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列:
、
、
、…,則此數(shù)列的通項公式是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=ax
2+x-a(-1≤x≤1),且|a|≤1,則|f(x)|的最大值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
圓心在曲線y=-
(x>0)上,且與直線3x-4y+3=0相切的面積最小的圓的方程是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
對于任意θ∈R,|sinθ-2|+|sinθ-3|≥
a+恒成立,則實數(shù)a的取值范圍
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在直角三角形ABC中,∠C=90°,AB=2,AC=1,若
=,則
•=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(如圖)已知△ABC中,∠ABC=30°,AB=2,AD是BC邊上的高,則
•
=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
求函數(shù)f(x)=ax2+3x-4(-1≤x≤a)的最大值和最小值.
查看答案和解析>>