(2009•盧灣區(qū)二模)在△ABC中,設(shè)角A、B、C所對(duì)的邊分別是a、b、c,若b2+c2=a2+
2
bc
,且a=
2
b
,則∠C=
12
12
分析:根據(jù)題意,由余弦定理可求得cosA,進(jìn)而求得A.又根據(jù)正弦定理及且a=
2
b可求得sinB,進(jìn)而求得B,最后根據(jù)三角形內(nèi)角和求得C.
解答:解:因?yàn)椋篶osA=
c2+b2-a2
2bc
=
2
bc
2bc
=
2
2

又因?yàn)槭侨切蝺?nèi)角
∴A=
π
4

a
sinA
=
b
sinB
⇒sinB=
bsinA
a
=
1
2

又∵a=
2
b⇒a>b⇒B=
π
6

∴C=π-
π
4
-
π
6
=
12

故答案為
12
點(diǎn)評(píng):本題主要考查了正弦定理和余弦定理的應(yīng)用.屬基礎(chǔ)題.余弦定理是解決有關(guān)斜三角形的重要定理
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•盧灣區(qū)二模)設(shè)數(shù)列{an}的前n項(xiàng)之和為Sn,若Sn=
1
12
(an+3)2
(n∈N*),則{an}( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•盧灣區(qū)二模)在平面直角坐標(biāo)系中,若O為坐標(biāo)原點(diǎn),則A、B、C三點(diǎn)在同一直線上的充要條件為存在惟一的實(shí)數(shù)λ,使得
OC
=λ•
OA
+(1-λ)•
OB
成立,此時(shí)稱實(shí)數(shù)λ為“向量
OC
關(guān)于
OA
OB
的終點(diǎn)共線分解系數(shù)”.若已知P1(3,1)、P2(-1,3),且向量
OP3
是直線l:x-y+10=0的法向量,則“向量
OP3
關(guān)于
OP1
OP2
的終點(diǎn)共線分解系數(shù)”為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•盧灣區(qū)二模)二項(xiàng)式(x+
1
x
)6
的展開(kāi)式中的常數(shù)項(xiàng)為
15
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•盧灣區(qū)二模)若函數(shù)f(x)=2sin2x-2
3
sinxsin(x-
π
2
)
能使得不等式|f(x)-m|<2在區(qū)間(0, 
3
)
上恒成立,則實(shí)數(shù)m的取值范圍是
(1,2]
(1,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案