【題目】已知在平面直角坐標(biāo)系中,點(diǎn)AB,C的坐標(biāo)分別為Acosαsinα),B2,0),C0,2),α∈(0,π).

1)若,求α的值;

2)若,求的值.

【答案】(1);(2

【解析】

(1)先求出,然后根據(jù)向量模的坐標(biāo)公式列式可解得tanα=1,再得α=;

(2)根據(jù)=-可得sin2α=-,再根據(jù)原式=sin2α=-

1=(2-cosα,-sinα),=(-cosα,2-cosα),

由||=||得||2=||2

∴5-4cosα=5-4sinα,即tanα=1,

又α∈(0,π),∴α=

2=(2-cosα)(-cosα)+(-sinα)(2-sinα)

=cos2α-2cosα+sin2α-2sinα

=2-2(sinα+cosα)=-

∴sinα+cosα=,sin2α=(sinα+cosα)2-1=-,

==sin2α=-

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等差數(shù)列{an}的公差為d,點(diǎn)(an , bn)在函數(shù)f(x)=2x的圖象上(n∈N*).
(1)若a1=﹣2,點(diǎn)(a8 , 4b7)在函數(shù)f(x)的圖象上,求數(shù)列{an}的前n項(xiàng)和Sn
(2)若a1=1,函數(shù)f(x)的圖象在點(diǎn)(a2 , b2)處的切線在x軸上的截距為2﹣ ,求數(shù)列{ }的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小組共10人,利用假期參加義工活動(dòng),已知參加義工活動(dòng)次數(shù)為1,2,3的人數(shù)分別為3,3,4,. 現(xiàn)從這10人中隨機(jī)選出2人作為該組代表參加座談會(huì).
(1)設(shè)A為事件“選出的2人參加義工活動(dòng)次數(shù)之和為4”,求事件A發(fā)生的概率;
(2)設(shè) 為選出的2人參加義工活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量 的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù),存在實(shí)數(shù), ,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校為調(diào)查學(xué)生喜歡“應(yīng)用統(tǒng)計(jì)”課程是否與性別有關(guān),隨機(jī)抽取了選修課程的60名學(xué)生,得到數(shù)據(jù)如下表:

喜歡統(tǒng)計(jì)課程

不喜歡統(tǒng)計(jì)課程

合計(jì)

男生

20

10

30

女生

10

20

30

合計(jì)

30

30

60

(1)判斷是否有99.5%的把握認(rèn)為喜歡“應(yīng)用統(tǒng)計(jì)”課程與性別有關(guān)?

(2)用分層抽樣的方法從喜歡統(tǒng)計(jì)課程的學(xué)生中抽取6名學(xué)生作進(jìn)一步調(diào)查,將這6名學(xué)生作為一個(gè)樣本,從中任選3人,求恰有2個(gè)男生和1個(gè)女生的概率.

下面的臨界值表供參考:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)在頸椎病患者越來(lái)越多,甚至大學(xué)生也出現(xiàn)了頸椎病,年輕人患頸椎病多與工作、生活方式有關(guān),某調(diào)查機(jī)構(gòu)為了了解大學(xué)生患有頸椎病是否與長(zhǎng)期過(guò)度使用電子產(chǎn)品有關(guān),在遂寧市中心醫(yī)院隨機(jī)的對(duì)入院的50名大學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到了如下的4×4列聯(lián)表:

未過(guò)度使用

過(guò)度使用

合計(jì)

未患頸椎病

15

5

20

患頸椎病

10

20

30

合計(jì)

25

25

50

(1)是否有99.5%的把握認(rèn)為大學(xué)生患頸錐病與長(zhǎng)期過(guò)度使用電子產(chǎn)品有關(guān)?

(2)已知在患有頸錐病的10名未過(guò)度使用電子產(chǎn)品的大學(xué)生中,有3名大學(xué)生又患有腸胃炎,現(xiàn)在從上述的10名大學(xué)生中,抽取3名大學(xué)生進(jìn)行其他方面的排查,記選出患腸胃炎的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù)與公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為偶函數(shù),且函數(shù)

圖象的兩相鄰對(duì)稱(chēng)軸間的距離為.

1)求的值;

2)將函數(shù)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:數(shù)列{an}中, =n,a2=6,n∈N+
(1)求a1 , a3 , a4;
(2)猜想an的表達(dá)式并給出證明;
(3)記:Sn= + +…+ ,證明:Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[2019·武漢六中]袋子中有四個(gè)小球,分別寫(xiě)有“武、漢、軍、運(yùn)”四個(gè)字,從中任取一個(gè)小球,有放回抽取,直到取到“軍”“運(yùn)”二字就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率:利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“軍、運(yùn)、武、漢”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下16組隨機(jī)數(shù):

232 321 230 023 123 021 132 220

231 130 133 231 331 320 122 233

由此可以估計(jì),恰好第三次就停止的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案