【題目】已知函數(shù)f(x)=alnx﹣3x在x處取得極值.
(1)若對(duì)任意x∈(0,+∞),f(x)≤m恒成立,求實(shí)數(shù)m的取值范圍;
(2)討論函數(shù)F(x)=f(x)+x2+k(k∈R)的零點(diǎn)個(gè)數(shù).
【答案】(1)[﹣ln3﹣1,+∞);(2)答案不唯一,見解析
【解析】
(1)求導(dǎo)后,根據(jù)已知條件可得的值,進(jìn)而判斷函數(shù)的單調(diào)性,由此求出函數(shù)在定義域上的最大值,進(jìn)而求得實(shí)數(shù)的取值范圍;
(2)利用導(dǎo)數(shù)求出當(dāng)變化時(shí),,的變化情況,進(jìn)而討論得出結(jié)論.
(1)∵,
由題意,,
∴a=1,
∴,
當(dāng)時(shí),f′(x)<0,當(dāng)時(shí),f′(x)>0,
∴函數(shù)f(x)在上為增函數(shù),在上為減函數(shù),,
∴m≥﹣ln3﹣1,
即實(shí)數(shù)m的取值范圍為[﹣ln3﹣1,+∞);
(2)F(x)=f(x)+x2+k=lnx﹣3x+x2+k,x∈(0,+∞),∴,
令F′(x)=0,解得,當(dāng)x變化時(shí),F(x),F′(x)的變化情況如下表,
x | 1 | (1,+∞) | |||
F′(x) | + | 0 | ﹣ | 0 | + |
F(x) | 遞增 | 極大值 | 遞減 | 極小值 | 遞增 |
而,
∴當(dāng)且﹣2+k<0,即時(shí),函數(shù)F(x)有3個(gè)零點(diǎn);
當(dāng)或﹣2+k=0,即或k=2時(shí),函數(shù)F(x)有2個(gè)零點(diǎn);
當(dāng)或﹣2+k>0,即或k>2時(shí),函數(shù)F(x)有1個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:在桌面上,用母球擊打目標(biāo)球,使目標(biāo)球運(yùn)動(dòng),球的位置是指球心的位置,我們說球 A 是指該球的球心點(diǎn) A.兩球碰撞后,目標(biāo)球在兩球的球心所確定的直線上運(yùn)動(dòng),目標(biāo)球的運(yùn)動(dòng)方向是指目標(biāo)球被母球擊打時(shí),母球球心所指向目標(biāo)球球心的方向.所有的球都簡(jiǎn)化為平面上半徑為 1 的圓,且母球與目標(biāo)球有公共點(diǎn)時(shí),目標(biāo)球就開始運(yùn)動(dòng),在桌面上建立平面直角坐標(biāo)系,解決下列問題:
(1) 如圖,設(shè)母球 A 的位置為 (0, 0),目標(biāo)球 B 的位置為 (4, 0),要使目標(biāo)球 B 向 C(8, -4) 處運(yùn)動(dòng),求母球 A 球心運(yùn)動(dòng)的直線方程;
(2)如圖,若母球 A 的位置為 (0, -2),目標(biāo)球 B 的位置為 (4, 0),能否讓母球 A 擊打目標(biāo) B 球后,使目標(biāo) B 球向 (8,-4) 處運(yùn)動(dòng)?
(3)若 A 的位置為 (0,a) 時(shí),使得母球 A 擊打目標(biāo)球 B 時(shí),目標(biāo)球 B(4, 0) 運(yùn)動(dòng)方向可以碰到目標(biāo)球 C(7,-5),求 a 的最小值(只需要寫出結(jié)果即可)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面,四邊形是矩形,,,分別是棱,,的中點(diǎn).
(1)求證:平面;
(2)若,,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.
(1)證明:AD⊥PB.
(2)若PB=,AB=PA=2,求三棱錐P-BCD的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=cos(2x)的圖象向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)g(x)的圖象,則下列結(jié)論中正確的是_____.(填所有正確結(jié)論的序號(hào))
①g(x)的最小正周期為4π;
②g(x)在區(qū)間[0,]上單調(diào)遞減;
③g(x)圖象的一條對(duì)稱軸為x;
④g(x)圖象的一個(gè)對(duì)稱中心為(,0).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人承攬一項(xiàng)業(yè)務(wù),需做文字標(biāo)牌4個(gè),繪畫標(biāo)牌5個(gè),現(xiàn)有兩種規(guī)格的原料,甲種規(guī)格每張3m2,可做文字標(biāo)牌1個(gè),繪畫標(biāo)牌2個(gè),乙種規(guī)格每張2m2,可做文字標(biāo)牌2個(gè),繪畫標(biāo)牌1個(gè),求兩種規(guī)格的原料各用多少張,才能使總的用料面積最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一樓房高為米,某廣告公司在樓頂安裝一塊寬為米的廣告牌,為拉桿,廣告牌的傾角為,安裝過程中,一身高為米的監(jiān)理人員站在樓前觀察該廣傳牌的安裝效果:為保證安全,該監(jiān)理人員不得站在廣告牌的正下方:設(shè)米,該監(jiān)理人員觀察廣告牌的視角.
(1)試將表示為的函數(shù);
(2)求點(diǎn)的位置,使取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),圓,過點(diǎn)的直線與圓交于兩點(diǎn),線段的中點(diǎn)為(不同于),若,則的方程是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù))曲線的普通方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線和曲線的極坐標(biāo)方程;
(2)射線:依次與曲線和曲線交于、兩點(diǎn),射線:依次與曲線和曲線交于、兩點(diǎn),求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com