曲線在二階矩陣的作用下變換為曲線,
(I)求實(shí)數(shù)的值;
(II)求的逆矩陣.
(1);(2).
解析試題分析:(1)在曲線上分別設(shè)點(diǎn),再利用矩陣變換找出兩點(diǎn)坐標(biāo)的關(guān)系,根據(jù)待定系數(shù)法求出的值,(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cb/b/116ct4.png" style="vertical-align:middle;" />,則可以根據(jù)求逆矩陣的方法直接可以求出逆矩陣.
試題解析:
設(shè)為曲線上任意一點(diǎn),為曲線上與對應(yīng)的點(diǎn),則,即帶入到得,
,化簡得
那么就有
解得
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/cb/b/116ct4.png" style="vertical-align:middle;" />,故
考點(diǎn):本題主要考查矩陣,矩陣與變換知識(shí).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A、M∩N=φ | B、M∪N=R | C、M=N | D、M∩N={(1,1)} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)M是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓=1在M-1的作用下的新曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
變換對應(yīng)的變換矩陣是
(1)求點(diǎn)在作用下的點(diǎn)的坐標(biāo);
(2)求函數(shù)的圖象在變換的作用下所得曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
點(diǎn)(-1,k)在伸壓變換矩陣之下的對應(yīng)點(diǎn)的坐標(biāo)為(-2,-4),求m、k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com