已知點(diǎn)直線(xiàn)AM,BM相交于點(diǎn)M,且.
(1)求點(diǎn)M的軌跡的方程;
(2)過(guò)定點(diǎn)(0,1)作直線(xiàn)PQ與曲線(xiàn)C交于P,Q兩點(diǎn),且,求直線(xiàn)PQ的方程.
(1); (2).
解析試題分析:(1)先設(shè)出點(diǎn)的坐標(biāo),根據(jù)兩點(diǎn)間的斜率公式求出和,代入已知條件中,化簡(jiǎn)整理得,限制條件一定要有;(2)分直線(xiàn)的斜率存在與不存在兩種情況進(jìn)行討論,當(dāng)斜率存在時(shí),設(shè)出直線(xiàn)方程及與曲線(xiàn)的交點(diǎn)坐標(biāo),聯(lián)立方程由方程的根與系數(shù)的關(guān)系求得,,代入、兩點(diǎn)間的距離公式并化簡(jiǎn),結(jié)合已知條件求得的值,代入所設(shè)的直線(xiàn)方程即可.
試題解析:(1)解:設(shè), ..1分
則,, .3分
∴, .4分
∴. .6分 (條件1分)
(2)當(dāng)直線(xiàn)的斜率不存在時(shí),即是橢圓的長(zhǎng)軸,其長(zhǎng)為,顯然不合,
所以直線(xiàn)的斜率存在, 7分
設(shè)直線(xiàn)的方程是,,,
則, .8分
聯(lián)立,消去得, 9分
∵,∴, ..10分
∴,, .11分
∴
, ..12分
∴,∴,即, .13分
所以直線(xiàn)PQ的方程是. ..14分
考點(diǎn):1.直線(xiàn)的斜率;2.方程的根與系數(shù)的關(guān)系;3.分類(lèi)討論思想;4.兩點(diǎn)間的距離公式;5.直線(xiàn)方程;6.軌跡方程
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)是定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ce/9/1rvgj4.png" style="vertical-align:middle;" />的單調(diào)減函數(shù),且是奇函數(shù),當(dāng)時(shí),
(1)求的解析式;(2)解關(guān)于的不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d4/e/ktar01.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(Ⅰ)求值;
(Ⅱ)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(Ⅲ)設(shè)關(guān)于的函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
新晨投資公司擬投資開(kāi)發(fā)某項(xiàng)新產(chǎn)品,市場(chǎng)評(píng)估能獲得萬(wàn)元的投資收益.現(xiàn)公司準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金(單位:萬(wàn)元)隨投資收益(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不低于萬(wàn)元,同時(shí)不超過(guò)投資收益的.
(1)設(shè)獎(jiǎng)勵(lì)方案的函數(shù)模型為,試用數(shù)學(xué)語(yǔ)言表述公司對(duì)獎(jiǎng)勵(lì)方案的函數(shù)模型的基本要求.
(2)下面是公司預(yù)設(shè)的兩個(gè)獎(jiǎng)勵(lì)方案的函數(shù)模型:
①; ②
試分別分析這兩個(gè)函數(shù)模型是否符合公司要求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù),滿(mǎn)足,且方程有兩個(gè)相等的實(shí)根.
(1)求函數(shù)的解析式;
(2)當(dāng)時(shí),求函數(shù)的最小值的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是定義在上的奇函數(shù),且當(dāng)時(shí),.
(Ⅰ)求的表達(dá)式;
(Ⅱ)判斷并證明函數(shù)在區(qū)間上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若定義在上的函數(shù)同時(shí)滿(mǎn)足:①;②;③若,且,則成立.則稱(chēng)函數(shù)為“夢(mèng)函數(shù)”.
(1)試驗(yàn)證在區(qū)間上是否為“夢(mèng)函數(shù)”;
(2)若函數(shù)為“夢(mèng)函數(shù)”,求的最值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com