某企業(yè)決定從甲、乙兩種產(chǎn)品中選擇一種進(jìn)行投資生產(chǎn),已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下(單位:萬美元):
年固定成本每件產(chǎn)品成本每件產(chǎn)品銷售價(jià)每年最多生產(chǎn)的件數(shù)
甲產(chǎn)品30a10200
乙產(chǎn)品50818120
其中年固定成本與生產(chǎn)的件數(shù)無關(guān),a為常數(shù),且4≤a≤8.另外年銷售x件乙產(chǎn)品時(shí)需上交0.05x2萬美元的特別關(guān)稅.
(1)寫出該廠分別投資生產(chǎn)甲、乙兩種產(chǎn)品的年利潤y1,y2與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)x之間的函數(shù)關(guān)系式;
(2)分別求出投資生產(chǎn)這兩種產(chǎn)品的最大利潤;
(3)如何決定投資可獲得最大年利潤.
考點(diǎn):函數(shù)模型的選擇與應(yīng)用,簡單線性規(guī)劃
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)條件設(shè)出變量,即可建立生產(chǎn)甲、乙兩種產(chǎn)品的年利潤y1,y2與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)x之間的函數(shù)關(guān)系式;
(2)根據(jù)函數(shù)的性質(zhì),即可分別求出投資生產(chǎn)這兩種產(chǎn)品的最大利潤;
(3)比較兩個(gè)函數(shù)的大小關(guān)系,即可決定投資可獲得最大年利潤.
解答: 解。1)由題意,y1=(10-a)x-30,0≤x≤200,x∈N;
y2=(18-8)x-50-0.05x2=10x-50-0.05x2,0≤x≤120,x∈N.
(2)∵4≤a≤8,∴10-a>0,
故y1=(10-a)x-30,0≤x≤200是增函數(shù).
所以x=200時(shí),y1有最大值1 970-200a.
y2=10x-50-0.05x2=-0.05(x-100)2+450.
x∈[0,120],且∈N,
∴當(dāng)x=100時(shí),y2取最大值450.
∴投資生產(chǎn)這兩種產(chǎn)品的最大利潤分別為(1 970-200a)萬美元和450萬美元.
(3)令1 970-200a=450,解得a=7.6,因?yàn)楹瘮?shù)f(a)=1 970-200a是定義域上的減函數(shù),
所以當(dāng)4≤a≤7.6時(shí),投資甲產(chǎn)品;
當(dāng)7.6<a≤8時(shí),投資乙產(chǎn)品;
當(dāng)a=7.6時(shí),投資甲產(chǎn)品、乙產(chǎn)品均可.
點(diǎn)評:本題主要考查函數(shù)的應(yīng)用問題,根據(jù)條件建立合適的數(shù)學(xué)模型,利用函數(shù)的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=3,a1+a2+a3=12,則a4+a5+a6=( 。
A、28B、27C、26D、21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x+sinxcosx.
(Ⅰ)求f(x)的最小正周期和最小值;
(Ⅱ)若α∈(
π
4
π
2
)且f(α+
8
)=
2-
6
4
,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的焦距為2,兩準(zhǔn)線間的距離為10.設(shè)A(5,0),過點(diǎn)A作直線l交橢圓C于P,Q兩點(diǎn),過點(diǎn)P作x軸的垂線交橢圓C于另一點(diǎn)S.
(1)求橢圓C的方程;
(2)求證直線SQ過x軸上一定點(diǎn)B;
(3)若過點(diǎn)A作直線與橢圓C只有一個(gè)公共點(diǎn)D,求過B,D兩點(diǎn),且以AD為切線的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD中,E、F分別是BC,DC的中點(diǎn),若
AB
=
a
,
AD
=
b
,試用
a
,
b
,表示
DE
、
BF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M(-1,0),N(1,0),動點(diǎn)P(x,y)滿足|PM|+|PN|=2
3
,
(1)求P的軌跡C的方程;
(2)是否存在過點(diǎn)N(1,0)的直線l與曲線C相交于A,B兩點(diǎn),并且曲線C上存在點(diǎn)Q,使四邊形OAQB為平行四邊形?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四棱錐P-ABCD中,底面ABCD是個(gè)邊長為2的正方形,側(cè)棱PA⊥底面ABCD,且PA=2,Q是PA的中點(diǎn).
(Ⅰ)證明:PC∥平面BDQ;
(Ⅱ)求三棱錐C-BDQ的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C對邊的長,且滿足
cosB-b
cosC+2a+c
=-
b
2a+c

(1)求角B的值.
(2)若b=7,a+c=8,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)計(jì)兩種求2+4+6+…+2n的值的不同算法并編寫程序.

查看答案和解析>>

同步練習(xí)冊答案