已知函數(shù)y=x3-3x+c的圖象與x軸至少有兩個(gè)公共點(diǎn),則c的取值范圍是( 。
A、[-2,2]
B、(-2,2)
C、[2,+∞)
D、(-∞,-2]
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:函數(shù)y=x3-3x+c的圖象與x軸至少有兩個(gè)公共點(diǎn),等價(jià)為f極小值(x)≤0≤f極大值(x),利用導(dǎo)數(shù)求函數(shù) 的最值即可得到結(jié)論.
解答: 解:函數(shù)的導(dǎo)數(shù)為y′=f′(x)=3x2-3=3(x-1)(x+1),
由f′(x)=3(x-1)(x+1)>0,解得x>1或x<-1,此時(shí)函數(shù)單調(diào)遞增,
由f′(x)=(x-1)(x+1)<0,解得-1<x<1,此時(shí)函數(shù)單調(diào)遞減,
在x=-1,函數(shù)f(x)取得極大值f極大值(x)=f(-1)=2+c,
在x=1,函數(shù)f(x)取得極小值f極小值(x)=f(1)=-2+c,
要使y=x3-3x+c的圖象與x軸至少有兩個(gè)公共點(diǎn),等價(jià)為f極小值(x)≤0≤f極大值(x),
-2+c≤0
2+c≥0
,
c≤2
c≥-2
,
解得-2≤c≤2,
故c的取值范圍是[-2,2],
故選:A
點(diǎn)評:本題主要考查函數(shù)方程個(gè)數(shù)的應(yīng)用,求函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和極值,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足log2[4cos2(xy)+
1
4cos2(xy)
]=lny-
y
2
+ln
e2
2
,則ycos4x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+x+1(x∈[1,4])的值域?yàn)?div id="6kdbsou" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn)分別為F1和F2,左、右頂點(diǎn)分別為A1和A2,過焦點(diǎn)F2且與x軸垂直的直線和雙曲線的一個(gè)交點(diǎn)為P,若|
PA1
|是|
F1F2
|和|
A1F2
|的等比中項(xiàng),則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

表面積為324π的球,其內(nèi)接長方體的高是14,且底面是正方形,則這個(gè)長方體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=-
1
2
x2+blnx在[1,+∞)上是減函數(shù),則b的取值范圍是( 。
A、[-1,+∞)
B、(-1,+∞)
C、(-∞,1]
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖正方體ABCD-A1B1C1D1,把一根拉緊的細(xì)繩兩端分別系在AC1兩點(diǎn),此時(shí)這個(gè)正方體的正視圖可能是( 。
A、①②B、②③C、②④D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=ln
x2+1
|x|
(x∈R,x≠0),有下列命題:
①函數(shù)y=f(x)的圖象關(guān)于y軸對稱;
②在區(qū)間(-∞,0)上,f(x)是減函數(shù);
③函數(shù)y=f(x)的最小值是ln2;    
④在區(qū)間(-∞,0)上,f(x)是增函數(shù).
其中正確命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)在定義域[-4,6]內(nèi)可導(dǎo),其圖象如圖,記y=f(x)的導(dǎo)函數(shù)為y=f′(x),則不等式f′(x)≤0的解集為( 。
A、[-
4
3
,1]∪[
11
3
,6]
B、[-3,0]∪[
7
3
,5]
C、[-4,-
4
3
]∪[1,
7
3
]
D、[-4,-3]∪[0,1]∪[5,6]

查看答案和解析>>

同步練習(xí)冊答案