已知等差數(shù)列{an}中,公差d≠0,a1=2,且a1,a3,a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記bn=
1
anan+1
,求數(shù)列{bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由題意列出方程,解得公差d,寫出通項(xiàng)公式;
(Ⅱ)利用裂項(xiàng)相消法對數(shù)列求和即得結(jié)論.
解答: 解:(I)設(shè)數(shù)列{an}的公差為d
∵a1,a3,a7成等比數(shù)列
a
2
3
=a1a7,∴(a1+2d)2=a1(a1+6d)
又a1=2,∴d=1或d=0(舍去)
∴an=2+(n-1)•1=n+1;
(Ⅱ)由(Ⅰ)得bn=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2
,
∴Tn=b1+b2+…+bn=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2
=
1
2
-
1
n+2
=
n
2(n+2)
點(diǎn)評:本題考查等差數(shù)列的性質(zhì)及裂項(xiàng)相消法對數(shù)列求和,注意方程思想在解題中的運(yùn)用,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,復(fù)數(shù)z的共軛復(fù)數(shù)是
.
z
,如果|z|+
.
z
=8-4i,那么z等于( 。
A、-3-4iB、-3+4i
C、4+3iD、3+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(-1,0)上的函數(shù)y=f(x)的圖象如圖所示,對于滿足-1<x1<x2<0的任意x1,x2,錯(cuò)誤的結(jié)論是(  )
A、當(dāng)x∈(-1,0)時(shí),x>f(x)
B、當(dāng)x∈(-1,0)時(shí),導(dǎo)函數(shù)f′(x)為增函數(shù)
C、f(x2)-f(x1)≤x2-x1
D、x1f(x2)>x2f(x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有6個(gè)房間安排4個(gè)旅游者住宿,每人可以隨意進(jìn)哪一間,而且一個(gè)房間也可以住多個(gè)人,求下列問題中各有多少種不同的住法?
(1)每人隨意選擇,則所有的入住方法;
(2)第1號房間有1人,第2號房間有3人;
(3)指定的4個(gè)房間中各有1人;
(4)恰有1個(gè)房間中有2人;
(5)恰有2個(gè)房間中各有2人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,對一切正整數(shù)n,點(diǎn)Pn(n,Sn)都在偶函數(shù)f(x)=x2+bx的圖象上.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=2n+an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin(x-
π
6
)+cos(x-
π
6
).
(Ⅰ)當(dāng)x∈A時(shí),函數(shù)f(x)取得最大值或最小值,求集合A;
(Ⅱ)將集合A中x∈(0,+∞)的所有x的值,從小到大排成一數(shù)列,記為{an},求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)令bn=
π
2
 
anan+1
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試證當(dāng)n為正整數(shù)時(shí),f(n)=32n+2-8n-9能被64整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:A={x|x2-2x-3<0},q:B={x|x2-2mx+m2-9<0}.
(1)若A∩B=(1,3),求實(shí)數(shù)m的值;
(2)若?p是?q的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線f(x)=ex+x
(1)求曲線在點(diǎn)P(1,f(1))處的切線方程;
(2)若點(diǎn)Q為曲線y=f(x)上到直線y=2x-1距離最近的點(diǎn),求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案