關(guān)于函數(shù)f(x)=2sin(3x-
3
4
π)
,有下列命題:
①其最小正周期為
2
3
π
;     
②其圖象由y=2sin3x向左平移
π
4
個(gè)單位而得到;
③其表達(dá)式寫(xiě)成f(x)=2cos(3x+
3
4
π)
;
④在x∈[
π
12
,
5
12
π]
為單調(diào)遞增函數(shù);
則其中真命題的個(gè)數(shù)是( 。
分析:由函數(shù)f(x)=2sin(3x-
3
4
π)
,利用三角函數(shù)的性質(zhì),逐個(gè)進(jìn)行判斷.
解答:解:∵函數(shù)f(x)=2sin(3x-
3
4
π)
,
∴其最小正周期T=
3

其圖象由y=2sin3x向右平移
π
4
個(gè)單位得到,
其表達(dá)式寫(xiě)成f(x)=2cos(3x+
3
4
π)

x∈[
π
12
,
5
12
π]
為單調(diào)遞增函數(shù).
故①③④對(duì),②錯(cuò).
故選C.
點(diǎn)評(píng):本題考查命題的真假判斷,解題時(shí)要認(rèn)真審題,注意三角函數(shù)的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)集R中定義一種運(yùn)算“*”,對(duì)任意a,b∈R,a*b為唯一確定的實(shí)數(shù),且具有性質(zhì):
(1)對(duì)任意a,b∈R,a*b=b*a;
(2)對(duì)任意a∈R,a*0=a;
(3)對(duì)任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
關(guān)于函數(shù)f(x)=(2x)*
1
2x
的性質(zhì),有如下說(shuō)法:
①函數(shù)f(x)的最小值為3;
②函數(shù)f(x)為奇函數(shù);
③函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-
1
2
),(
1
2
,+∞)

其中所有正確說(shuō)法的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2,x>k
x2+4x+2,x≤k
,若關(guān)于x的方程f(x)=x恰有三個(gè)不同的實(shí)根,則k的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)集R中定義一種運(yùn)算“*”,對(duì)于任意給定的a,b∈R,a*b為唯一確定的實(shí)數(shù),且具有性質(zhì);
(1)對(duì)任意a,b∈R,a*b=b*a;
(2)對(duì)任意a∈R,a*0=a;
(3)對(duì)任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
關(guān)于函數(shù)f(x)=(3x)*(
1
3x
)
的性質(zhì),有如下說(shuō)法:
①函數(shù)f(x)的最小值為3;
②函數(shù)f(x)為奇函數(shù);
③函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-
1
3
),(
1
3
,+∞)

其中所有正確說(shuō)法的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=2|x+
1
x
|
,下列命題判斷錯(cuò)誤的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

關(guān)于函數(shù)f(x)=2|x+
1
x
|
,下列命題判斷錯(cuò)誤的是( 。
A.圖象關(guān)于原點(diǎn)成中心對(duì)稱(chēng)
B.值域?yàn)閇4,+∞)
C.在(-∞,-1]上是減函數(shù)
D.在(0,1]上是減函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案