如圖,公園有一塊邊長(zhǎng)為2的等邊△ABC的邊角地,現(xiàn)修成草坪, 圖中DE把草坪分成面積相等的兩部分,D在AB上,E在AC上.
(1).設(shè)AD=x(x≥0),DE=y,求用x表示y的函數(shù)關(guān)系式,并求函數(shù)的定義域;
(2).如果DE是灌溉水管,為節(jié)約成本,希望它最短,DE的位置應(yīng)在哪里?如果DE是參觀線路,則希望它最長(zhǎng),DE的位置又應(yīng)在哪里?請(qǐng)予證明.

(1);(2)如果DE是水管,DE的位置在AD=AE=處,如果DE是參觀路線,則DE為AB中線或AC中線時(shí),DE最長(zhǎng),證明過(guò)程詳見解析.

解析試題分析:(1)在△ADE中,利用余弦定理可得,又根據(jù)面積公式可得,消去AE后即可得到y(tǒng)與x的函數(shù)關(guān)系式,又根據(jù)可以得到x的取值范圍;(2)如果DE是水管,則問(wèn)題等價(jià)于當(dāng)時(shí),求的最小值,利用基本不等式即可求得當(dāng)時(shí),y有最小值為,如果DE是參觀路線,則問(wèn)題等價(jià)于問(wèn)題等價(jià)于當(dāng)時(shí),求的最小值,根據(jù)函數(shù)在[1,2]上的單調(diào)性,可得當(dāng)x=1或2時(shí),y有最小值
(1)在△ADE中,由余弦定理:
又∵ ②
②代入①得(y>0), ∴
由題意可知,所以函數(shù)的定義域是,

(2)如果DE是水管,
當(dāng)且僅當(dāng),即x=時(shí)“=”成立,故DE∥BC,且DE=
如果DE是參觀線路,記,可知函數(shù)在[1,]上遞減,在[,2]上遞增,
 ∴y max.即DE為AB中線或AC中線時(shí),DE最長(zhǎng).    
考點(diǎn):1、平面向量的數(shù)量積;2、三角形面積計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知A、B、C為三角形ABC的三內(nèi)角,其對(duì)應(yīng)邊分別為a,b,c,若有2acosC=2b+c成立.
(1)求A的大;(2)若,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知ΔABC的角A、B、C所對(duì)的邊分別是a、b、c,設(shè)向量, .

(1)若//,求證:ΔABC為等腰三角形;    
(2)若,邊長(zhǎng),角,求ΔABC的面積 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知在中,角A,B,C,的對(duì)邊分別為,且
(1)若的值;
(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知在銳角中,為角所對(duì)的邊,且.
(1)求角的值;
(2)若,則求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且a=2,
(1)若b=4,求sin A的值;
(2)若△ABC的面積SABC=4,求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,已知,.
(1)求角的值;
(2)若的邊,求邊的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)f(x)=cos+2cos2,x∈R.
(1)求f(x)的值域;
(2)記△ABC的內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c,若f(B)=1,b=1,c=,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,角對(duì)的邊分別為,已知.
(1)若,求的取值范圍;
(2)若,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案