(本小題滿分15分)如圖,設(shè)P是拋物線:上的動點。過點做圓的兩條切線,交直線:于兩點。
(Ⅰ)求的圓心到拋物線 準(zhǔn)線的距離。
(Ⅱ)是否存在點,使線段被拋物線在點處得切線平分,若存在,求出點的坐標(biāo);若不存在,請說明理由。
本題主要考查拋物線幾何性質(zhì),直線與拋物線、直線與圓的位置關(guān)系,同時考查解析幾何的基本思想方法和運算求解能力。滿分15分。
(Ⅰ)解:因為拋物線C1的準(zhǔn)線方程為:
所以圓心M到拋物線C1準(zhǔn)線的距離為:
(Ⅱ)解:設(shè)點P的坐標(biāo)為,拋物線C1在點P處的切線交直線于點D。
再設(shè)A,B,D的橫坐標(biāo)分別為
過點的拋物線C1的切線方程為:
(1)
當(dāng)時,過點P(1,1)與圓C2的切線PA為:
可得
當(dāng)時,過點P(—1,1)與圓C2的切線PA為:
可得
所以
設(shè)切線PA,PB的斜率為,則
(2)
(3)
將分別代入(1),(2),(3)得
從而
又
即
同理,
所以是方程的兩個不相等的根,從而
因為
所以
從而
進(jìn)而得
綜上所述,存在點P滿足題意,點P的坐標(biāo)為
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分15分)
已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,試分別解答以下兩小題.
(。┤舨坏仁對任意的恒成立,求實數(shù)的取值范圍;
(ⅱ)若是兩個不相等的正數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題
(本小題滿分15分).
已知、分別為橢圓:的
上、下焦點,其中也是拋物線:的焦點,
點是與在第二象限的交點,且。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點P(1,3)和圓:,過點P的動直線與圓相交于不同的兩點A,B,在線段AB取一點Q,滿足:,(且)。求證:點Q總在某定直線上。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題
(本小題滿分15分)
如圖已知,橢圓的左、右焦點分別為、,過的直線與橢圓相交于A、B兩點。
(Ⅰ)若,且,求橢圓的離心率;
(Ⅱ)若求的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本小題滿分15分)若函數(shù)在定義域內(nèi)存在區(qū)間,滿足在上的值域為,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.
(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;
(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題
(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:
(1)第1次抽到理科題的概率;
(2)第1次和第2次都抽到理科題的概率;
(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com