如圖,為半圓,AB為半圓直徑,O為半圓圓心,且OD⊥AB,Q為線段OD的中點(diǎn),已知|AB|=4,曲線C過Q點(diǎn),動(dòng)點(diǎn)P在曲線C上運(yùn)動(dòng)且保持|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;
(2)過D點(diǎn)的直線l與曲線C相交于不同的兩點(diǎn)M、N,且M在D、N之間,設(shè)=λ,求λ的取值范圍.
(1) +y2=1
(2)
(1)以AB、OD所在直線分別為x軸、y軸,O為原點(diǎn),建立平面直角坐標(biāo)系,?
∵|PA|+|PB|=|QA|+|QB|=2>|AB|=4.
∴曲線C為以原點(diǎn)為中心,A、B為焦點(diǎn)的橢圓.
設(shè)其長半軸為a,短半軸為b,半焦距為c,則2a=2,∴a=,c=2,b=1.
∴曲線C的方程為+y2=1.
(2)設(shè)直線l的方程為y=kx+2,
代入+y2=1,得(1+5k2)x2+20kx+15=0.
Δ=(20k)2-4×15(1+5k2)>0,得k2>.由圖可知=λ
由韋達(dá)定理得
將x1=λx2代入得
兩式相除得
①
M在D、N中間,∴λ<1 ②
又∵當(dāng)k不存在時(shí),顯然λ= (此時(shí)直線l與y軸重合).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
如圖,為半圓,AB為半圓直徑,O為半圓圓心,且OD⊥AB,Q為線段OD的中點(diǎn),已知|AB|=4,曲線C過Q點(diǎn),動(dòng)點(diǎn)P在曲線C上運(yùn)動(dòng)且保持|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;
(2)過D點(diǎn)的直線l與曲線C相交于不同的兩點(diǎn)M、N,且M在D、N之間,設(shè)=λ,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆河北省高二期中考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
(12分) 如圖,為半圓,AB為半圓直徑,O為半圓圓心,且OD⊥AB,Q為線段OD的中點(diǎn),已知|AB|=4,曲線C過Q點(diǎn),動(dòng)點(diǎn)P在曲線C上運(yùn)動(dòng)且保持|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;
(2)過D點(diǎn)的直線l與曲線C相交于不同的兩點(diǎn)M、N,且M在D、N之間,設(shè)=λ,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省福州市高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年陜西省寶雞市高三質(zhì)量檢測數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com