設x、y滿足約束條件
x+y≤1
y≥x
x≥0
,則z=2x-y的最大值為( 。
A、0
B、2
C、3
D、
1
2
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,z=3x-y表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最小值即可.
解答: 解:不等式組
x+y≤1
y≥x
x≥0
表示的平面區(qū)域如圖所示,
當直線z=2x-y過點A,即
x+y=1
x=y
解得
x=
1
2
y=
1
2
,A(
1
2
,
1
2
)時,
在y軸上截距最小,此時z取得最大值
1
2

故選:D.
點評:本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設f(x)=3x-x2,則在下列區(qū)間中,使函數(shù)f(x)有零點的區(qū)間是( 。
A、(0,1)
B、(1,2)
C、(-1,0 )
D、(-2,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入的x值為
1
2
,則輸出的y的值為( 。
A、1
B、-1
C、
1
2
D、
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,
AB
=
a
,
BC
=
b
,且
a
b
>0,則△ABC是( 。
A、銳角三角形
B、直角三角形
C、等腰直角三角形
D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(x-
13π
2
)(x∈R),下面結(jié)論錯誤的是( 。
A、函數(shù)f(x)的最小正周期為2π
B、函數(shù)f(x)在區(qū)間[0,
π
2
]上是增函數(shù)
C、函數(shù)f(x)的圖象關(guān)于直線x=0對稱
D、函數(shù)f(x)是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線
x=2+3t
y=2+t
,上對應t=0,t=1,兩點間的距離是(  )
A、1
B、
10
C、10
D、2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某超市貨架上擺放著某品牌紅燒牛肉方便面,如圖是它們的三視圖,則貨架上的紅燒牛肉方便面至少有( 。
A、8桶B、9桶
C、10桶D、11桶

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2
3
sinxcosx+2cos2x-1(x∈R)
(1)求函數(shù)f(x)的最小正周期及在區(qū)間[0,
π
2
]上的最大值和最小值;
(2)若f(x0)=
6
5
,x0∈[
π
4
π
2
],求cos(2x0+
π
6
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求圓心在直線2x-y-3=0上,且過點A(5,2)和點B(3,2)的圓的方程.

查看答案和解析>>

同步練習冊答案