如圖,在長方形ABCD中,AB=2,BC=1,E為DC的中點,F(xiàn)為線段EC(端點除外)上一動點,現(xiàn)將△AFD沿AF折起,使平面ABD⊥平面ABC,在平面ABD內(nèi)過點D作DK⊥AB,K為垂足,設AK=t,則t的取值范圍是 .
(,1)
解析試題分析:此題的破解可采用二個極端位置法,即對于F位于DC的中點時與隨著F點到C點時,分別求出此兩個位置的t值即可得到所求的答案
解:此題的破解可采用二個極端位置法,即對于F位于DC的中點時,可得t=1,
隨著F點到C點時,當C與F無限接近,不妨令二者重合,此時有CD=2
因CB⊥AB,CB⊥DK,
∴CB⊥平面ADB,即有CB⊥BD,
對于CD=2,BC=1,在直角三角形CBD中,得BD=,
又AD=1,AB=2,再由勾股定理可得∠BDA是直角,因此有AD⊥BD
再由DK⊥AB,可得三角形ADB和三角形AKD相似,可得t=,
因此t的取值的范圍是(,1)
故答案為(,1)
考點:平面與平面垂直的性質(zhì);棱錐的結構特征
點評:考查空間圖形的想象能力,及根據(jù)相關的定理對圖形中的位置關系進行精準判斷的能力
科目:高中數(shù)學 來源: 題型:填空題
如圖,AB是⊙O的直徑,C是圓周上不同于A、B的點,PA垂直于⊙O所在的平面,AE⊥PB于E,AF⊥PC于F,因此, ⊥平面PBC.(填圖中的一條直線)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
如圖所示,等邊△ABC的邊長為4,D為BC中點,沿AD把△ADC折疊到△ADC′處,
使二面角B-AD-C′為60°,則折疊后二面角A-BC′-D的正切值為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
如圖,矩形ABCD中,DC=,AD=1,在DC上截取DE=1,將△ADE沿AE
翻折到D1點,點D1在平面ABC上的射影落在AC上時,二面角D1—AE—B的平面角的余
弦值是 。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結論中:
①PB⊥AE;②平面ABC⊥平面PBC;③直線BC∥平面PAE;④∠PDA=45°.
其中正確的有________(把所有正確的序號都填上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com