【題目】將函數(shù)f(x)=3sin(4x+ )圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,再向右平移 個(gè)單位長度,得到函數(shù)y=g(x)的圖象,則y=g(x)圖象的一條對(duì)稱軸是( )
A.x=
B.x=
C.
D.
【答案】C
【解析】解:將函數(shù)f(x)=3sin(4x+ )圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,可得函數(shù)y=3sin(2x+ )的圖象, 再向右平移 個(gè)單位長度,可得y=3sin[2(x﹣ )+ ]=3sin(2x﹣ )的圖象,故g(x)=3sin(2x﹣ ).
令 2x﹣ =kπ+ ,k∈z,得到 x= π+ ,k∈z.
則得 y=g(x)圖象的一條對(duì)稱軸是 ,
故選:C.
根據(jù)函數(shù)y=Asin(ωx+)的圖象變換規(guī)律,得到g(x)=3sin(2x﹣ ),從而得到g(x)圖象的一條對(duì)稱軸是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1.
(1)求a,b的值;
(2)設(shè) ,若關(guān)于x的方程 在(﹣∞,0)∪(0,+∞)上有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn , Tn分別是數(shù)列{an},{bn}的前n項(xiàng)和,已知對(duì)于任意n∈N* , 都有3an=2Sn+3,數(shù)列{bn}是等差數(shù)列,且T5=25,b10=19. (Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn= ,求數(shù)列{cn}的前n項(xiàng)和Rn , 并求Rn的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則它的體積為( )
A.48
B.16
C.32
D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,記實(shí)數(shù)m的最大值為M.
(1)求M的值;
(2)正數(shù)a,b,c滿足a+2b+c=M,求證: + ≥1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,記實(shí)數(shù)m的最大值為M.
(1)求M的值;
(2)正數(shù)a,b,c滿足a+2b+c=M,求證: + ≥1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某村投資128萬元建起了一處生態(tài)采摘園,預(yù)計(jì)在經(jīng)營過程中,第一年支出10萬元,以后每年支出都比上一年增加4萬元,從第一年起每年的銷售收入都為76萬元.設(shè)y表示前n(n∈N*)年的純利潤總和(利潤總和=經(jīng)營總收入﹣經(jīng)營總支出﹣投資).
(1)該生態(tài)園從第幾年開始盈利?
(2)該生態(tài)園前幾年的年平均利潤最大,最大利潤是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com