給出定義:若(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=|x-{x}|的四個命題:
①函數(shù)y=f(x)的定義域是R,值域是[0,];
②函數(shù)y=f(x)的圖像關(guān)于直線x=(k∈Z)對稱;
③函數(shù)y=f(x)是周期函數(shù),最小正周期是1;
④函數(shù)y=f(x)在上是增函數(shù);
則其中真命題是_________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:湖南省長沙市雅禮中學(xué)2009屆高三第七次月考數(shù)學(xué)理科試題 題型:013
給出定義:若(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=|x-{x}|的四個命題:
①函數(shù)y=f(x)的定義域?yàn)镽,值域?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/1776/0008/a9f82ae9bc19542d535c41247860b3b3/A/Image12.gif" width=33 height=34>;
②函數(shù)y=f(x)的圖像關(guān)于直線(k∈Z)對稱;
③函數(shù)y=f(x)是周期函數(shù),最小正周期為1;
④函數(shù)y=f(x)在上是增函數(shù).
其中正確的命題個數(shù)為
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:山西省山大附中2012屆高三10月月考數(shù)學(xué)理科試題 題型:013
給出定義:若(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m.函數(shù).對于函數(shù)f(x),現(xiàn)給出如下判斷:
①函數(shù)y=f(x)是偶函數(shù);
②函數(shù)y=f(x)是周期函數(shù);
③函數(shù)y=f(x)在區(qū)間(,]上單調(diào)遞增;
④函數(shù)y=f(x)的圖象關(guān)于直線(k∈Z)對稱.
則判斷正確的結(jié)論的個數(shù)是
1
2
3
4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣西柳鐵一中2012屆高三第四次月考數(shù)學(xué)理科試題 題型:022
給出定義:若(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m,在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個命題:
①y=f(x)的定義域是R,值域是;
②點(diǎn)的圖像的對稱中心;
③函數(shù)上是增函數(shù);
④函數(shù)y=f(x)的最小正周期為1;
則其中真命題是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:吉林省白山市友好學(xué)校2012屆高三12月聯(lián)考數(shù)學(xué)文科試題 題型:022
給出定義:若(其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x}=m,在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x-{x}的四個命題:
①函數(shù)y=f(x)的定義域?yàn)镽,最大值是;
②函數(shù)y=f(x)在[0,1]上是增函數(shù);
③函數(shù)y=f(x)是周期函數(shù),最小正周期為1;
④函數(shù)y=f(x)的圖象的對稱中心是(0,0).
其中正確命題的序號是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com