【題目】已知a=cos61°cos127°+cos29°cos37°, , ,則a,b,c的大小關(guān)系是(
A.a<b<c
B.a>b>c
C.c>a>b
D.a<c<b

【答案】D
【解析】 解:∵a=cos61°cos127°+cos29°cos37°=﹣cos61°sin37°+sin61°cos37°=sin(61°﹣37°)=sin24°,
=sin26°,
=sin25°,
∴由y=sinx在(0°,90°)單調(diào)遞增,利用單位圓的知識可得:sin24°<sin25°<sin26°<tan26°,
∴a<c<b.
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解兩角和與差的余弦公式的相關(guān)知識,掌握兩角和與差的余弦公式:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足2acosC﹣(2b﹣c)=0.
(1)求角A;
(2)若sinC=2sinB,且a= ,求邊b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量=(3,﹣4),=(6,﹣3),=(5﹣m,﹣3﹣m).

(Ⅰ)若點(diǎn)A,B,C不能構(gòu)成三角形,求實數(shù)m應(yīng)滿足的條件;

(Ⅱ)若△ABC為直角三角形,且C為直角,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,BD⊥CD,正方形ADEF所在的平面和平面ABCD垂直,H是BE的中點(diǎn),G是AE,DF的交點(diǎn).

(1)求證:GH∥平面CDE;
(2)求證:BD⊥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sinx,2cosx), =(5 cosx,cosx),函數(shù)f(x)= +| |2
(1)求函數(shù)f(x)的最小正周期;
(2)若x∈( )時,f(x)=﹣3,求cos2x的值;
(3)若cosx≥ ,x∈(﹣ ),且f(x)=m有且僅有一個實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,其圖象既是軸對稱圖形又在區(qū)間(0,+∞)上單調(diào)遞增的是( )
A.y=
B.y=﹣x2+1
C.y=2x
D.y=lg|x+1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù) 的圖象,只需要將函數(shù)y=sin3x的圖象( )m.
A.向右平移 個單位
B.向左平移 個單位
C.向右平移 個單位
D.向左平移 個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0),其焦點(diǎn)為F(1,0),過F作斜率為k的直線交拋物線C于A、B兩點(diǎn),交其準(zhǔn)線于P點(diǎn).

(1)求P的值;
(2)設(shè)|PA|+|PB|=λ|PA||PB||PF|,若k∈[ ,1],求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是等比數(shù)列,an0a3=12,且a2,a4,a2+36成等差數(shù)列.

1)求數(shù)列{an}的通項公式;

(2)設(shè){bn}是等差數(shù)列,且b3=a3,b9=a5,求b3+b5+b7++b2n+1

查看答案和解析>>

同步練習(xí)冊答案