(8分)
已知四邊形是空間四邊形,分別是邊的中點(diǎn),求證:四邊形是平行四邊形。
證明 由題意知EH  BD   FG  BD  ∴EHFG
∴四邊形是平行四邊形
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐的底面為菱形,平面,分別為的中點(diǎn),

(Ⅰ)求證:平面
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)
如圖,在三棱柱中,已知,側(cè)面

(1)求直線與底面ABC所成角正切值;
(2)在棱(不包含端點(diǎn)上確定一點(diǎn)的位置,使得(要求說明理由).
(3)在(2)的條件下,若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共10分)
三棱柱ABC—A1B1C1中,CC1⊥平面ABC,△ABC是邊長為2的等邊三角形,D為AB邊中點(diǎn),且CC1=2AB.

(1)(4′)求證:平面C1CD⊥平面ABC;
(2)(6′)求三棱錐D—CBB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,已知正三棱柱的底面正三角形的邊長是2,D是的中點(diǎn),直線與側(cè)面所成的角是.

⑴求二面角的大;
⑵求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐P-ABCD中,底面為正文形,PA平面ABCD,且PA=AD,E為棱PC上的一點(diǎn),PD平面ABE
(I)求證:E為PC的中點(diǎn)
(II)若N為CD中點(diǎn),M為AB上的動(dòng)點(diǎn),當(dāng)直線MN與平面ABE所成的角最大時(shí),求二面角C-EM—N的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四邊形ABCD為正方形,PD平面ABCD,PD=AD=2。

(1)求PC與平面PBD所成的角;
(2)在線段PB上是否存在一點(diǎn)E,使得平面ADE?并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,點(diǎn)P在正方形ABCD所在平面外,PD⊥平面ABCD,PDAD,則PABD所成角的度數(shù)為            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

異面直線是指(    )
A.不相交的兩條直線B.分別位于兩個(gè)平面內(nèi)的直線
C.一個(gè)平面內(nèi)的直線和不在這個(gè)平面內(nèi)的直線D.不同在任何一個(gè)平面內(nèi)的兩條直線

查看答案和解析>>

同步練習(xí)冊答案