【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,點(diǎn)M為PC的中點(diǎn).

(1)求證:PA∥平面BMD;
(2)求證:AD⊥PB;
(3)若AB=PD=2,求點(diǎn)A到平面BMD的距離.

【答案】
(1)證明:設(shè)AC和BD交于點(diǎn)O,則由底面ABCD是平行四邊形可得O為AC的中點(diǎn).

由于點(diǎn)M為PC的中點(diǎn),故MO為三角形PAC的中位線(xiàn),故MO∥PA.再由PA不在平面BMD內(nèi),而MO在平面BMD內(nèi),

故有PA∥平面BMD


(2)證明:由PD⊥平面ABCD,可得PD⊥AD,平行四邊形ABCD中,∵∠BCD=60°,AB=2AD,

∴cos∠BAD= =cos60°= ,∴AD⊥BD.

這樣,AD垂直于平面PBD內(nèi)的兩條相交直線(xiàn),故AD⊥平面PBD,∴AD⊥PB


(3)解:若AB=PD=2,則AD=1,BD=ABsin∠BAD=2× = ,

由于平面BMD經(jīng)過(guò)AC的中點(diǎn),故點(diǎn)A到平面BMD的距離等于點(diǎn)C到平面BMD的距離.

取CD得中點(diǎn)N,則MN⊥平面ABCD,且MN= PD=1.

設(shè)點(diǎn)C到平面MBD的距離為h,則h為所求.

由AD⊥PB 可得BC⊥PB,故三角形PBC為直角三角形.

由于點(diǎn)M為PC的中點(diǎn),利用直角三角形斜邊的中線(xiàn)等于斜邊的一半,可得MD=MB,故三角形MBD為等腰三角形,

故MO⊥BD.

由于PA= = = ,∴MO=

由VMBCD=VCMBD 可得, )MN= ×BD×MO )×h,

故有 ×( )×1= )h,

解得h=


【解析】(1)設(shè)AC和BD交于點(diǎn)O,MO為三角形PAC的中位線(xiàn)可得MO∥PA,再利用直線(xiàn)和平面平行的判定定理,證得結(jié)論.(2)由PD⊥平面ABCD,可得PD⊥AD,再由cos∠BAD= = ,證得 AD⊥BD,可證AD⊥平面PBD,從而證得結(jié)論.(3)點(diǎn)A到平面BMD的距離等于點(diǎn)C到平面BMD的距離h,求出MN、MO的值,利用等體積法求得點(diǎn)C到平面MBD的距離h.
【考點(diǎn)精析】本題主要考查了直線(xiàn)與平面平行的判定和直線(xiàn)與平面垂直的判定的相關(guān)知識(shí)點(diǎn),需要掌握平面外一條直線(xiàn)與此平面內(nèi)的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行;簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行;一條直線(xiàn)與一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線(xiàn)”這一條件不可忽視;b)定理體現(xiàn)了“直線(xiàn)與平面垂直”與“直線(xiàn)與直線(xiàn)垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為 ,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線(xiàn) 相切.
(1)求橢圓的方程;
(2)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對(duì)稱(chēng)的任意兩個(gè)不同的點(diǎn),連接PB交橢圓C于另一點(diǎn)E,證明直線(xiàn)AE與x軸相交于點(diǎn)Q(1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機(jī)抽取50個(gè)作為樣本,稱(chēng)出它們的重量(單位:克),重量分組區(qū)間為[5,15],(15,25],(25,35],(35,45],由此得到樣本的重量頻率分布直方圖(如圖),

(1)求a的值,并根據(jù)樣本數(shù)據(jù),試估計(jì)盒子中小球重量的眾數(shù)與平均值;
(2)從盒子中隨機(jī)抽取3個(gè)小球,其中重量在[5,15]內(nèi)的小球個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望.(以直方圖中的頻率作為概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,cos2C+2 cosC+2=0.
(1)求角C的大;
(2)若b= a,△ABC的面積為 sinAsinB,求sinA及c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的焦距為2,且過(guò)點(diǎn)P(1,
(1)橢圓C的方程;
(2)設(shè)橢圓C的左右焦點(diǎn)分別為F1 , F2 , 過(guò)點(diǎn)F2的直線(xiàn)l與橢圓C交于M,N兩點(diǎn).
①當(dāng)直線(xiàn)l的傾斜角為45°時(shí),求|MN|的長(zhǎng);
②求△MF1N的內(nèi)切圓的面積的最大值,并求出當(dāng)△MF1N的內(nèi)切圓的面積取最大值時(shí)直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在空間直角坐標(biāo)系中有直三棱柱ABC﹣A1B1C1 , CA=2CB,CC1=3CB,則直線(xiàn)BC1與直線(xiàn)AB1夾角的余弦值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)y=f(x)的定義域是[0,2],則函數(shù)g(x)= 的定義域是( )
A.[0,1]
B.[0,1)
C.[0,1)∪(1,4]
D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知非空集合A,B滿(mǎn)足以下兩個(gè)條件.
(。〢∪B={1,2,3,4,5,6},A∩B=;
(ⅱ)A的元素個(gè)數(shù)不是A中的元素,B的元素個(gè)數(shù)不是B中的元素,則有序集合對(duì)(A,B)的個(gè)數(shù)為( )
A.10
B.12
C.14
D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,CD=1,∠BCD=60°,BD⊥CD,正方形ADEF,且面ADEF⊥面ABCD.
(Ⅰ)求證:BD⊥平面ECD.
(Ⅱ)求D點(diǎn)到面CEB的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案