【題目】設函數(shù),,且對所有的實數(shù),等式都成立,其、、、、、、、,、.
(1)如果函數(shù),,求實數(shù)的值;
(2)設函數(shù),直接寫出滿足的兩個函數(shù);
(3)如果方程無實數(shù)解,求證:方程無實解.
【答案】(1);(2),,答案不唯一;(3)證明見解析.
【解析】
(1)根據(jù)已知條件直接代入計算即可;
(2)驗證滿足條件,再者若,則等式也滿足,由此可得出符合條件的函數(shù)的兩個不同的解析式;
(3)假設方程有實數(shù)解,利用反證法推出與已知條件矛盾,進而證明結論成立.
(1),,則,
,
,,解得;
(2)若,則,,此時;
若,則,,此時.
所以,當時,滿足的函數(shù)的兩個解析式可以是,(答案不唯一);
(3)假設方程有實數(shù)解,設,
則,,
兩式相減得,所以,,
由零點存在定理可知,存在,使得,
無實根,則永遠不成立,推出假設不成立.
所以,方程無實數(shù)解,方程也無實解.
科目:高中數(shù)學 來源: 題型:
【題目】原命題:“, 為兩個實數(shù),若,則, 中至少有一個不小于1”,下列說法錯誤的是( )
A. 逆命題為:若, 中至少有一個不小于1,則,為假命題
B. 否命題為:若,則, 都小于1,為假命題
C. 逆否命題為:若, 都小于1,則,為真命題
D. “”是“, 中至少有一個不小于1”的必要不充分條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
銷量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回歸直線方程=bx+a;(其中,,,,);
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(利潤=銷售收入-成本)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形, 垂直于底面, ,點為線段(不含端點)上一點.
(1)當是線段的中點時,求與平面所成角的正弦值;
(2)已知二面角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是數(shù)列的前n項和,,且.
(1)求數(shù)列的通項公式;
(2)對于正整數(shù),已知成等差數(shù)列,求正整數(shù)的值;
(3)設數(shù)列前n項和是,且滿足:對任意的正整數(shù)n,都有等式成立.求滿足等式的所有正整數(shù)n.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在Rt△ABC中,已知點A(-2,0),直角頂點B(0,-2),點C在x軸上。
(1)求Rt△ABC外接圓的方程;
(2)求過點(-4,0)且與Rt△ABC外接圓相切的直線的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】5G網(wǎng)絡是第五代移動通信網(wǎng)絡,其峰值理論傳輸速度可達每8秒1GB,比4G網(wǎng)絡的傳輸速度快數(shù)百倍.舉例來說,一部1G的電影可在8秒之內下載完成.隨著5G技術的誕生,用智能終端分享3D電影、游戲以及超高畫質(UHD)節(jié)目的時代正向我們走來.某手機網(wǎng)絡研發(fā)公司成立一個專業(yè)技術研發(fā)團隊解決各種技術問題,其中有數(shù)學專業(yè)畢業(yè),物理專業(yè)畢業(yè),其它專業(yè)畢業(yè)的各類研發(fā)人員共計1200人.現(xiàn)在公司為提高研發(fā)水平,采用分層抽樣抽取400人按分數(shù)對工作成績進行考核,并整理得如上頻率分布直方圖(每組的頻率視為概率).
(1)從總體的1200名學生中隨機抽取1人,估計其分數(shù)小于50的概率;
(2)研發(fā)公司決定對達到某分數(shù)以上的研發(fā)人員進行獎勵,要求獎勵研發(fā)人員的人數(shù)達到30%,請你估計這個分數(shù)的值;
(3)已知樣本中有三分之二的數(shù)學專業(yè)畢業(yè)的研發(fā)人員分數(shù)不低于70分,樣本中不低于70分的數(shù)學專業(yè)畢業(yè)的研發(fā)人員人數(shù)與物理及其它專業(yè)畢業(yè)的研發(fā)人員的人數(shù)和相等,估計總體中數(shù)學專業(yè)畢業(yè)的研發(fā)人員的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,天津之眼,全稱天津永樂橋摩天輪,是世界上唯一一個橋上瞰景摩天輪,是天津的地標之一 .永樂橋分上下兩層,上層橋面預留了一個長方形開口,供摩天輪輪盤穿過,摩天輪的直徑為110米,外掛裝48個透明座艙,在電力的驅動下逆時針勻速旋轉,轉一圈大約需要30分鐘.現(xiàn)將某一個透明座艙視為摩天輪上的一個點,當點到達最高點時,距離下層橋面的高度為113米,點在最低點處開始計時.
(1)試確定在時刻 (單位:分鐘)時點距離下層橋面的高度 (單位:米);
(2)若轉動一周內某一個摩天輪透明座艙在上下兩層橋面之間的運行時間大約為5分鐘,問上層橋面距離下層橋面的高度約為多少米?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面四邊形中, , 為等邊三角形,現(xiàn)將沿翻折得到四面體,點分別為的中點.
(Ⅰ)求證:四邊形為矩形;
(Ⅱ)當平面平面時,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com