【題目】在直角坐標系中,曲線與直線交于兩點,
(Ⅰ)當時,求在點和處的切線方程;
(Ⅱ)若軸上存在點,當變動時,總有,試求出坐標.
【答案】(Ⅰ)或(Ⅱ)
【解析】
(Ⅰ)過的切線斜率為切線方程為:,與聯(lián)立方程得,, 由得,同理求N點處的切線方程;(Ⅱ)當時,,聯(lián)立直線和拋物線再結(jié)合韋達定理代入上式,可得到結(jié)果.
(Ⅰ)當時,聯(lián)立方程得或,
不妨取和,設過的切線斜率為,
則其切線方程為:,與聯(lián)立方程得,,
由得,
分所以曲線在的切線方程為:,
同理,曲線在的切線方程為:.
綜上在點和處的切線方程分別為和,
(Ⅱ)聯(lián)立方程,消去整理得,
設,斜率分別為,則由根與系數(shù)關系得,
由題意,當時,
,
將代入整理得恒成立,所以.
所以軸上存在點,當變動時,總有.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在幾何體ABCDEF中,四邊形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)證明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直線AE與平面ABCD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,點A、B是函數(shù)f(x)圖象上不同兩點,則∠AOB(O為坐標原點)的取值范圍是( )
A.(0, )
B.(0, ]
C.(0, )
D.(0, ]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線C1:x=﹣2,圓C2:(x﹣1)2+(y﹣2)2=1,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系.
(Ⅰ)求C1 , C2的極坐標方程;
(Ⅱ)若直線C3的極坐標方程為θ= (ρ∈R),設C2與C3的交點為M,N,求△C2MN的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 對任意n∈N+ , Sn=(﹣1)nan+ +n﹣3且(t﹣an+1)(t﹣an)<0恒成立,則實數(shù)t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)環(huán)保部門測定,某處的污染指數(shù)與附近污染源的強度成正比,與到污染源距離的平方成反比,比例常數(shù)為.現(xiàn)已知相距的兩家化工廠(污染源)的污染強度分別為,它們連線上任意一點處(異于兩點)的污染指數(shù)等于兩化工廠對該處的污染指數(shù)之和.設.
(1)試將表示為的函數(shù);
(2)若,且時,取得最小值,試求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓錐曲線C經(jīng)過定點P(3,),它的一個焦點為F(1,0),對應于該焦點的準線為x=-1,斜率為2的直線交圓錐曲線C于A、B兩點,且 AB =,求圓錐曲線C和直線的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某興趣小組欲研究某地區(qū)晝夜溫差大小與患感冒就診人數(shù)之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1到5月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 |
晝夜溫差 | 8 | 10 | 13 | 12 | 9 |
就診人數(shù)(個) | 18 | 25 | 28 | 26 | 17 |
該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取一組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用選取的一組數(shù)據(jù)進行檢驗.
(1)若選取的是1月的一組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù).求出關于的線性回歸方程.
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差不超過2,則認為得到的線性回歸方程是理想的,試判斷該小組所得的線性回歸方程是否理想?如果不理想,請說明理由,如果理想,試預測晝夜溫差為時,因感冒而就診的人數(shù)約為多少?
參考公式:, .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com