【題目】已知函數(shù)fxR上的奇函數(shù).

1)若x[,],求fx)的取值范圍

2)若對(duì)任意的x1[1,總存在x2[]使得mlog2(﹣6x12+24x116)﹣fx20m0)成立,求實(shí)數(shù)m的取值范圍.

【答案】(1)[45](2).

【解析】

1)利用奇函數(shù)的性質(zhì),結(jié)合f0)=0,求得a2,從而確定出函數(shù)的解析式,之后換元,令tsinx,結(jié)合題中所給的自變量的范圍,求得,得到函數(shù),利用函數(shù)的單調(diào)性求得結(jié)果;

2)根據(jù)題意,將問(wèn)題轉(zhuǎn)化為兩個(gè)函數(shù)值域之間的關(guān)系,先求出兩個(gè)函數(shù)的值域,之后應(yīng)用具備包含關(guān)系的兩個(gè)集合的特征,列出對(duì)應(yīng)的不等式組,求得結(jié)果.

1)由題意,f0)=0,即a20,解得a2,

,令tsinx,由x[,]得,,

,

易知函數(shù)gt)在上單調(diào)遞增,故gt)∈[4,5]

fx)的取值范圍為[4,5]

2)由已知,對(duì)任意的x1[1,總存在x2[,]使得mlog2(﹣6x12+24x116fx2)(m0)成立,

設(shè)函數(shù),的值域?yàn)榧?/span>A,函數(shù)的值域?yàn)榧?/span>B,

由已知,AB,由(1)得B[45]

當(dāng)x1[1,時(shí),,,

,

,

解得

m0,故實(shí)數(shù)m的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB,C為函數(shù)的圖象上的三點(diǎn),它們的橫坐標(biāo)分別是t、t+2、t+4,其中t1

.

1)設(shè)△ABC的面積為S,求Sft);

2)判斷函數(shù)Sft)的單調(diào)性;

3)求Sft)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)時(shí)間經(jīng)過(guò)(時(shí)),時(shí)針、分針各轉(zhuǎn)了多少度?各等于多少弧度?

2)有人說(shuō),鐘的時(shí)針和分針一天內(nèi)會(huì)重合24次。你認(rèn)為這種說(shuō)法是否正確?請(qǐng)說(shuō)明理由.

(提示:從午夜零時(shí)算起,假設(shè)分針走了t min會(huì)與時(shí)針重合,一天內(nèi)分針和時(shí)針會(huì)重合n次,建立t關(guān)于n的函數(shù)解析式,并畫(huà)出其圖象,然后求出每次重合的時(shí)間)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系.已知曲線(xiàn)為參數(shù)), 為參數(shù)).

(1)化,的方程為普通方程,并說(shuō)明它們分別表示什么曲線(xiàn);

(2)直線(xiàn)的極坐標(biāo)方程為,若上的點(diǎn)對(duì)應(yīng)的參數(shù)為,上的動(dòng)點(diǎn),求線(xiàn)段的中點(diǎn)到直線(xiàn)距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=|2x3|+x+1

1)求函數(shù)fx)的最小值;

2)當(dāng)x≥1時(shí),關(guān)于x的不等式f2x)<4x+2a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論中正確的個(gè)數(shù)是(

①正三棱錐的頂點(diǎn)在底面的射影到底面各頂點(diǎn)的距離相等;

②有兩個(gè)側(cè)面是矩形的棱柱是直棱柱;

③兩個(gè)底畫(huà)平行且相似的多面體是棱臺(tái);

④底面是正三角形,其余各面都是等腰三角形的三棱錐一定是正三棱錐.

A.0B.1C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)為了計(jì)算函數(shù)圖象與x軸,直線(xiàn),所圍成形狀A(yù)的面積,采用“隨機(jī)模擬方法”,用計(jì)算機(jī)分別產(chǎn)生10個(gè)在上的均勻隨機(jī)數(shù)和10個(gè)在上的均勻隨機(jī)數(shù),其數(shù)據(jù)記錄為如下表的前兩行.

2.50

1.01

1.90

1.22

2.52

2.17

1.89

1.96

1.36

2.22

0.84

0.25

0.98

0.15

0.01

0.60

0.59

0.88

0.84

0.10

0.92

0.01

0.64

0.20

0.92

0.77

0.64

0.67

0.31

0.80

(1)依據(jù)表格中的數(shù)據(jù)回答,在圖形A內(nèi)的點(diǎn)有多少個(gè),分別是什么?

(2)估算圖形A的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中,為參數(shù),且.

(Ⅰ)當(dāng)時(shí),判斷函數(shù)是否有極值.

(Ⅱ)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍.

)若對(duì)(Ⅱ)中所求的取值范圍內(nèi)的任意參數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)結(jié)論:

當(dāng)a為任意實(shí)數(shù)時(shí),直線(xiàn)(a﹣1)x﹣y+2a+1=0恒過(guò)定點(diǎn)P,則過(guò)點(diǎn)P且焦點(diǎn)在y軸上的拋物線(xiàn)的標(biāo)準(zhǔn)方程是;

已知雙曲線(xiàn)的右焦點(diǎn)為(5,0),一條漸近線(xiàn)方程為2x﹣y=0,則雙曲線(xiàn)的標(biāo)準(zhǔn)方程是

拋物線(xiàn)的準(zhǔn)線(xiàn)方程為.

已知雙曲線(xiàn),其離心率e(1,2),則m的取值范圍是(﹣12,0).

其中正確命題的序號(hào)是___________.(把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案