【題目】定義在上的奇函數有最小正周期4,且時,
(1)判斷并證明在上的單調性,并求在上的解析式;
(2)當為何值時,關于的方程在上有實數解?
科目:高中數學 來源: 題型:
【題目】已知定圓:,其圓心為,點為圓所在平面內一定點,點為圓上一個動點,若線段的中垂線與直線交于點,則動點的軌跡可能為______.(寫出所有正確的序號)(1)橢圓;(2)雙曲線;(3)拋物線;(4)圓;(5)直線;(6)一個點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點為且過點橢圓C與軸的交點為A、B(點A位于點B的上方),直線與橢圓C交于不同的兩點M、N(點M位于點N的上方).
(1)求橢圓C的方程;
(2)求△OMN面積的最大值;
(3)求證:直線AN和直線BM交點的縱坐標為常值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中:
①若,滿足,則的最大值為;
②若,則函數的最小值為
③若,滿足,則的最小值為
④函數的最小值為
正確的有__________.(把你認為正確的序號全部寫上)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C的頂點為坐標原點O,對稱軸為x軸,其準線過點.
(1)求拋物線C的方程;
(2)過拋物線焦點F作直線l,使得拋物線C上恰有三個點到直線l的距離都為,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數,.
(1)若函數f(x)在處有極值,求函數f(x)的最大值;
(2)是否存在實數b,使得關于x的不等式在上恒成立?若存在,求出b的取值范圍;若不存在,說明理由;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的離心率為,圓與正半軸交于點,圓在點處的切線被橢圓截得的弦長為.
(1)求橢圓的方程;
(2)設圓上任意一點處的切線交橢圓于點、,求證:.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com