已知函數(shù)f(x)=mx+
x
在x=
1
4
處有極值,則m=
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:由已知得f′(x)=m+
1
2
x
,且f(
1
4
)=m+
1
2
1
4
=0,由此能求出m=-1.
解答: 解:∵f(x)=mx+
x
,
∴f′(x)=m+
1
2
x

∵函數(shù)f(x)=mx+
x
在x=
1
4
處有極值,
f(
1
4
)=m+
1
2
1
4
=0,
解得m=-1.
故答案為:-1.
點(diǎn)評(píng):本題主要考查極值的概念、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)知識(shí),同時(shí)考查推理論證能力,解題時(shí)要注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-alnx.
(1)若a=2e,求f(x)的單調(diào)區(qū)間和極值;
(2)若f(x)在(0,e)上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.(其中e是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

欲修建一橫斷面為等腰梯形(如圖)的水渠,為降低成本必須盡量減少水與渠壁的接觸面,若水渠橫斷面面積設(shè)計(jì)為定值S,渠深h,則水渠壁的傾角α(0°<α<90°)應(yīng)為多大時(shí),方能使修建成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-5x+4=0},B={x|(x-3)(x-a)=0,a∈R}.
(1)若a=1,求A∩B、A∪B;
(2)若A∩B≠∅,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,請(qǐng)證明Sn,S2n-Sn,S3n-S2n(n∈N+)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若B=
π
4
,0<A<
π
2
,且a2,b2,c2成等差數(shù)列,則tanA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x2-4x+8
x-2
的極大值點(diǎn)與極小值點(diǎn)分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

①不等式x2+bx+c<0的解集為(2,3),則b-c=-11;
②函數(shù)f(x)=
x2-2x+5
+
x2-4x+13
的最小值為
29
;
③若角A,角B為鈍角△ABC的兩銳角,則有sinA+sinB<cosA+cosB;
④在等比數(shù)列{an}中,a3=4,S3=12,則通項(xiàng)公式an=(-
1
2
n-5
⑤直線x-y+1=0關(guān)于點(diǎn)P(3,2)的對(duì)稱直線為:x-y-3=0;
以上說(shuō)法正確的是
 
.(填上你認(rèn)為正確的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案