精英家教網 > 高中數學 > 題目詳情
已知曲線
(1)試求曲線在點處的切線方程;
(2)試求與直線平行的曲線C的切線方程.
(1) ;(2)

試題分析:(1)先求出的值,再求函數的導函數,求得的值即為點斜率,代入點斜式方程,再化為一般式方程即可;(2)設切點為,利用導數的幾何意義和相互平行的直線的斜率相等,即可得所求切線的斜率,再求出切點的坐標,代入點斜式方程,再化為一般式方程即可.
(1) ∵,∴,求導數得:,
∴切線的斜率為
∴所求切線方程為,即:
(2)設與直線平行的切線的切點為,
則切線的斜率為
又∵所求切線與直線平行,∴
解得:,代入曲線方程得:切點為,
∴所求切線方程為:,
即:
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=x2-4,設曲線y=f(x)在點(xn,f(xn))處的切線與x軸的交點為(xn+1,0)(n∈N +),其中xn為正實數.
(1)用xn表示xn+1
(2)若x1=4,記an=lg,證明數列{an}成等比數列,并求數列{xn}的通項公式;
(3)若x1=4,bn=xn-2,Tn是數列{bn}的前n項和,證明Tn<3.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數處的切線的斜率為.
(1)求實數的值及函數的最大值;
(2)證明:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數,其中.
(1)當時,求函數的圖象在點處的切線方程;
(2)如果對于任意,且,都有,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

曲線y=x3+ax+1的一條切線方程為y=2x+1,則實數a=________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知實數,函數。
(1)當時,討論函數的單調性;
(2)若在區(qū)間上是增函數,求實數的取值范圍;
(3)若當時,函數圖象上的點均在不等式,所表示的平面區(qū)域內,求實數 的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,矩形是一個觀光區(qū)的平面示意圖,建立平面直角坐標系,使頂點在坐標原點分別為軸、軸,(百米),(百米)()觀光區(qū)中間葉形陰影部分是一個人工湖,它的左下方邊緣曲線是函數的圖象的一段.為了便于游客觀光,擬在觀光區(qū)鋪設一條穿越該觀光區(qū)的直路(寬度不計),要求其與人工湖左下方邊緣曲線段相切(切點記為),并把該觀光區(qū)分為兩部分,且直線左下部分建設為花圃.記點的距離為表示花圃的面積.
(1)求花圃面積的表達式;
(2)求的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若存在正實數,對于任意,都有,則稱函數 上是有
界函數.下列函數①;  ②;  ③;  ④
其中“在上是有界函數”的序號為          

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若點P是曲線上任意一點,則點P到直線y=x-2的最小值為(    ).
A.1
B.
C.
D.

查看答案和解析>>

同步練習冊答案