【題目】如圖,在四棱錐P﹣ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F(xiàn),G分別是PC,PD,BC的中點(diǎn).
(1)求證:平面PAB∥平面EFG;
(2)證明:平面EFG⊥平面PAD;
(3)在線段PB上確定一點(diǎn)Q,使PC⊥平面ADQ,并給出證明.
【答案】
(1)證明:E,F(xiàn)分別是線段PC,PD的中點(diǎn),所以EF∥CD,
又ABCD為正方形,AB∥CD,
所以EF∥AB,
又EF平面PAB,所以EF∥平面PAB.
因?yàn)镋,G分別是線段PC,BC的中點(diǎn),所以EG∥PB,
又EG平面PAB,所以,EG∥平面PAB.
所以平面EFG∥平面PAB
(2)證明:因?yàn)镃D⊥AD,CD⊥PD,AD∩PD=D,所以CD⊥平面PAD,
又EF∥CD,所以EF⊥平面PAD,所以平面EFG⊥平面PAD
(3)證明:Q為線段PB中點(diǎn)時(shí),PC⊥平面ADQ.
取PB中點(diǎn)Q,連接DE,EQ,AQ,
由于EQ∥BC∥AD,所以ADEQ為平面四邊形,
由PD⊥平面ABCD,得AD⊥PD,
又AD⊥CD,PD∩CD=D,所以AD⊥平面PDC,
所以AD⊥PC,
又三角形PDC為等腰直角三角形,E為斜邊中點(diǎn),所以DE⊥PC,
AD∩DE=D,所以PC⊥平面ADQ.
【解析】(1)運(yùn)用面面平行的判定定理,先證線面平行,即可得到證明;(2)由線面垂直的性質(zhì)和面面垂直的判定定理,即可得證;(3)Q為線段PB中點(diǎn)時(shí),PC⊥平面ADQ.運(yùn)用線面垂直的判定定理即可得到結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC各頂點(diǎn)的坐標(biāo)分別為:A(0,4);B(﹣3,0),C(1,1)
(1)求點(diǎn)C到直線AB的距離;
(2)求AB邊的高所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中共有8個(gè)球,其中3個(gè)紅球、2個(gè)白球、3個(gè)黑球.若從袋中任取3個(gè)球,則所取3個(gè)球中至多有1個(gè)紅球的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列滿足,且是, 的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足,求數(shù)列的通項(xiàng)公式;
(Ⅲ)在(Ⅱ)的條件下,設(shè),問(wèn)是否存在實(shí)數(shù)使得數(shù)列()是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,2,在Rt△ABC中,AB=BC=4,點(diǎn)E在線段AB上,過(guò)點(diǎn)E作交AC于點(diǎn)F,將△AEF沿EF折起到△PEF的位置(點(diǎn)A與P重合),使得∠PEB=60°.
(1)求證:EF⊥PB;
(2)試問(wèn):當(dāng)點(diǎn)E在何處時(shí),四棱錐P﹣EFCB的側(cè)面的面積最大?并求此時(shí)四棱錐P﹣EFCB的體積及直線PC與平面EFCB所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若是函數(shù)的一個(gè)極值點(diǎn), 和1是的兩個(gè)零點(diǎn),且,求的值;
(2)若,且是的兩個(gè)極值點(diǎn),求證:當(dāng)時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)Pi(xi , yi)在直線li:aix+biy=ci上,若ai+bi=ici(i=1,2),且|P1P2|≥ 恒成立,則 + = .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某算法的流程圖如圖所示,運(yùn)行相應(yīng)程序,輸出S的值是( )
A.60
B.61
C.62
D.63
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年春節(jié)期間,某服裝超市舉辦了一次有獎(jiǎng)促銷活動(dòng),消費(fèi)每超過(guò)600元(含600元),均可抽獎(jiǎng)一次,抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種.
方案一:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,一次性摸出3個(gè)球,其中獎(jiǎng)規(guī)則為:若摸到3個(gè)紅球,享受免單優(yōu)惠;若摸出2個(gè)紅球則打6折,若摸出1個(gè)紅球,則打7折;若沒(méi)摸出紅球,則不打折.
方案二:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個(gè)顧客均分別消費(fèi)了600元,且均選擇抽獎(jiǎng)方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費(fèi)恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎(jiǎng)方案更合算?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com