【題目】如圖,在四棱錐中,平面平面ABCD,,,,點E在BC上,.
(1)求證:平面平面PAC;
(2)若直線PE與平面PAC所成的角的正弦值為,求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)以A為原點,AB、AD、AP所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用向量法能證明平面PED⊥平面PAC.
(2)求出平面PAC的一個法向量和平面PCD的一個法向量,利用向量法能求出二面角A﹣PC﹣D的余弦值.
證明:(1)∵平面PAB⊥平面ABCD,
平面PAB∩平面ABCD=AB,PA⊥AB,
∴PA⊥平面ABCD,
∵AB⊥AD,∴以A為原點,AB、AD、AP所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,
則A(0,0,0),D(0,2,0),E(2,1,0),C(2,4,0),設(shè)P(0,0,λ),λ>0,
則(2,4,0),(0,0,﹣2),(2,﹣1,0),
∴4﹣4+0=0,0,
∴DE⊥AC,DE⊥AP,
∵AC∩AP=A,∴DE⊥平面PAC,
∵DE平面PED,∴平面PED⊥平面PAC.
解:(2)由(1)知平面PAC的一個法向量為
(2,﹣1,0),
∵直線PE與平面PAC所成的角的正弦值為,
(2,1,﹣λ),
∴|cos|=||,
解得λ=±2,
∵λ>0,∴λ=2,即P(0,0,2),
設(shè)平面PCD的一個法向量為(x,y,z),
(2,2,0),(0,﹣2,2),
∴,取x=1,得(1,﹣1,﹣1),
∴cos,
∵二面角A﹣PC﹣D的平面角是銳角,
∴二面角A﹣PC﹣D的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)求的單調(diào)區(qū)間;
(2)若為整數(shù),且當(dāng)時, 恒成立,其中為的導(dǎo)函數(shù),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點,分別為橢圓C:的左右焦點,橢圓的離心率為,點在橢圓C上,不在軸上的動點P與動點Q關(guān)于原點O對稱,且四邊形的周長為.
(1)求動點P的軌跡方程;
(2)在動點P的軌跡上有兩個不同的點M,N,線段MN的中點為G,已知點在圓上,求的最大值,并判斷此時ΔOMN的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的表面積為__________;若該六面體內(nèi)有一小球,則小球的最大體積為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)在區(qū)間上零點的個數(shù);
(2)函數(shù)在區(qū)間上的極值點從小到大分別為,證明:
(Ⅰ);
(Ⅱ)對一切成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩種理財產(chǎn)品和,投資這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結(jié)果之間相互獨立):
產(chǎn)品:
投資結(jié)果 | 獲利 | 不賠不賺 | 虧損 |
概率 |
產(chǎn)品:
投資結(jié)果 | 獲利 | 不賠不賺 | 虧損 |
概率 |
注:,
(1)若甲、乙兩人分別選擇了產(chǎn)品投資,一年后他們中至少有一人獲利的概率大于,求實數(shù)的取值范圍;
(2)若丙要將20萬元人民幣投資其中一種產(chǎn)品,以一年后的投資收益的期望值為決策依據(jù),則丙選擇哪種產(chǎn)品投資較為理想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣lnx+ax(a∈R).
(1)當(dāng)a=﹣e+1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a≥﹣1時,求證:f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三4班有50名學(xué)生進行了一場投籃測試,其中男生30人,女生20人.為了了解其投籃成績,甲、乙兩人分別都對全班的學(xué)生進行編號(1-50號),并以不同的方法進行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃測試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):
甲抽取的樣本數(shù)據(jù)
編號 | 2 | 7 | 12 | 17 | 22 | 27 | 32 | 37 | 42 | 47 |
性別 | 男 | 女 | 男 | 男 | 女 | 男 | 女 | 男 | 女 | 女 |
投籃成 績 | 90 | 60 | 75 | 80 | 83 | 85 | 75 | 80 | 70 | 60 |
乙抽取的樣本數(shù)據(jù)
編號 | 1 | 8 | 10 | 20 | 23 | 28 | 33 | 35 | 43 | 48 |
性別 | 男 | 男 | 男 | 男 | 男 | 男 | 女 | 女 | 女 | 女 |
投籃成 績 | 95 | 85 | 85 | 70 | 70 | 80 | 60 | 65 | 70 | 60 |
(Ⅰ)在乙抽取的樣本中任取3人,記投籃優(yōu)秀的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望.
(Ⅱ)請你根據(jù)乙抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認為投籃成績和性別有關(guān)?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男 | |||
女 | |||
合計 | 10 |
(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu)?說明理由.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)對五年級的學(xué)生進行體質(zhì)測試,已知五年一班共有學(xué)生30人,測試立定跳遠的成績用莖葉圖表示如圖(單位:):男生成績在175以上(包括175)定義為“合格”,成績在175以下(不包括175)定義為“不合格”.女生成績在165以上(包括165)定義為“合格”,成績在165以下(不包括165)定義為“不合格”.
(1)求五年一班的女生立定跳遠成績的中位數(shù);
(2)在五年一班的男生中任意選取3人,求至少有2人的成績是合格的概率;
(3)若從五年一班成績“合格”的學(xué)生中選取2人參加復(fù)試,用表示其中男生的人數(shù),寫出的分布列,并求的數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com