【題目】如圖,在四棱錐中,平面平面ABCD,,,點EBC上,

1)求證:平面平面PAC;

2)若直線PE與平面PAC所成的角的正弦值為,求二面角的余弦值.

【答案】(1)見解析;(2)

【解析】

1)以A為原點,AB、AD、AP所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用向量法能證明平面PED⊥平面PAC

2)求出平面PAC的一個法向量和平面PCD的一個法向量,利用向量法能求出二面角APCD的余弦值.

證明:(1)∵平面PAB⊥平面ABCD

平面PAB∩平面ABCDAB,PAAB,

PA⊥平面ABCD

ABAD,∴以A為原點,AB、ADAP所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,

A000),D0,2,0),E2,10),C24,0),設(shè)P0,0λ),λ0

2,4,0),0,0,﹣2),2,﹣1,0),

44+000,

DEACDEAP,

ACAPA,∴DE⊥平面PAC,

DE平面PED,∴平面PED⊥平面PAC

解:(2)由(1)知平面PAC的一個法向量為

2,﹣1,0),

∵直線PE與平面PAC所成的角的正弦值為,

2,1,﹣λ),

|cos|||,

解得λ=±2,

λ0,∴λ2,即P0,0,2),

設(shè)平面PCD的一個法向量為x,y,z),

2,20),0,﹣2,2),

,取x1,得1,﹣1,﹣1),

cos,

∵二面角APCD的平面角是銳角,

∴二面角APCD的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)求的單調(diào)區(qū)間;

(2)若為整數(shù),且當(dāng)時, 恒成立,其中的導(dǎo)函數(shù),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點,分別為橢圓C的左右焦點,橢圓的離心率為,點在橢圓C上,不在軸上的動點P與動點Q關(guān)于原點O對稱,且四邊形的周長為.

1)求動點P的軌跡方程;

2)在動點P的軌跡上有兩個不同的點M,N,線段MN的中點為G,已知點在圓上,求的最大值,并判斷此時ΔOMN的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的表面積為__________;若該六面體內(nèi)有一小球,則小球的最大體積為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)判斷函數(shù)在區(qū)間上零點的個數(shù);

2)函數(shù)在區(qū)間上的極值點從小到大分別為,證明:

(Ⅰ);

(Ⅱ)對一切成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有兩種理財產(chǎn)品,投資這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結(jié)果之間相互獨立):

產(chǎn)品

投資結(jié)果

獲利

不賠不賺

虧損

概率

產(chǎn)品

投資結(jié)果

獲利

不賠不賺

虧損

概率

注:,

1)若甲、乙兩人分別選擇了產(chǎn)品投資,一年后他們中至少有一人獲利的概率大于,求實數(shù)的取值范圍;

2)若丙要將20萬元人民幣投資其中一種產(chǎn)品,以一年后的投資收益的期望值為決策依據(jù),則丙選擇哪種產(chǎn)品投資較為理想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=exlnx+axaR).

1)當(dāng)a=﹣e+1時,求函數(shù)fx)的單調(diào)區(qū)間;

2)當(dāng)a≥﹣1時,求證:fx)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三4班有50名學(xué)生進行了一場投籃測試,其中男生30人,女生20人.為了了解其投籃成績,甲、乙兩人分別都對全班的學(xué)生進行編號(1-50號),并以不同的方法進行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃測試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):

甲抽取的樣本數(shù)據(jù)

編號

2

7

12

17

22

27

32

37

42

47

性別











投籃成

90

60

75

80

83

85

75

80

70

60

乙抽取的樣本數(shù)據(jù)

編號

1

8

10

20

23

28

33

35

43

48

性別











投籃成

95

85

85

70

70

80

60

65

70

60

)在乙抽取的樣本中任取3人,記投籃優(yōu)秀的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望.

)請你根據(jù)乙抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認為投籃成績和性別有關(guān)?


優(yōu)秀

非優(yōu)秀

合計









合計



10

)判斷甲、乙各用何種抽樣方法,并根據(jù)()的結(jié)論判斷哪種抽樣方法更優(yōu)?說明理由.

下面的臨界值表供參考:


0.15

0.10

0.05

0.010

0.005

0.001


2.072

2.706

3.841

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)對五年級的學(xué)生進行體質(zhì)測試,已知五年一班共有學(xué)生30人,測試立定跳遠的成績用莖葉圖表示如圖(單位:):男生成績在175以上(包括175)定義為“合格”,成績在175以下(不包括175)定義為“不合格”.女生成績在165以上(包括165)定義為“合格”,成績在165以下(不包括165)定義為“不合格”.

(1)求五年一班的女生立定跳遠成績的中位數(shù);

(2)在五年一班的男生中任意選取3人,求至少有2人的成績是合格的概率;

(3)若從五年一班成績“合格”的學(xué)生中選取2人參加復(fù)試,用表示其中男生的人數(shù),寫出的分布列,并求的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案