求下列函數(shù)的定義域:
(1)y=
3
1-
1-x
;
(2)y=
(x+1)0
|x|-x
考點(diǎn):函數(shù)的定義域及其求法
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由不等式組
1-
1-x
≠0
1-x≥0
解得x≤1且x≠0,寫(xiě)成集合即為定義域;
(2)由不等式組
x+1≠0
|x|-x≠0
解得x<0且x≠-1寫(xiě)成集合即為定義域;
解答: 解:(1)要使函數(shù)y=
3
1-
1-x
有意義,需要
1-
1-x
≠0
1-x≥0
解得x≤1且x≠0
y=
3
1-
1-x
的定義域?yàn)閧x|x≤1且x≠0}
(2)要使函數(shù)y=
(x+1)0
|x|-x
有意義,需要
x+1≠0
|x|-x≠0
解得x<0且x≠-1
y=
(x+1)0
|x|-x
的定義域?yàn)閧x|x<0且x≠-1}
點(diǎn)評(píng):本題考查函數(shù)的定義域及其求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

夏季某高山上的溫度從山腳起,每升高100米降低0.7°C,已知山頂處的溫度是14.8°C,山腳溫度是26°C,則這山的山頂相對(duì)于山腳處的高度是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列集合中,只有一個(gè)子集的集合為( 。
A、{x|x2≤0}
B、{x|x3≤0}
C、{x|x2<0}
D、{x|x3<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知M={x∈R|x≥2
2
},a=π,有下列四個(gè)式子:①a∈M;②{a}?M;③a⊆M;④{a}∩M=π,其中正確的是(  )
A、①②B、①④C、②③D、①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
2x+1,x≤3
x2-1,x>3
則f(4)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的多面體中,四邊形ABCD為正方形,四邊形ADPQ是直角梯形,AD⊥DP,CD⊥平面ADPQ,AB=AQ=
1
2
DP.
(1)求證:PQ⊥平面DCQ;
(2)若AQ=2,求四面體C-BDQ的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3ex-1+bx3+c在x=1處取得極值2b+c+7,a,b,c為常數(shù),
(1)試確定a,b的值;
(2)當(dāng)x∈[-4,+∞)時(shí),討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若存在x>0,使得不等式f(x)≤c2-2c-1成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系中,已知點(diǎn)A(1,2,4),點(diǎn)B與點(diǎn)A關(guān)于y軸對(duì)稱,點(diǎn)C與點(diǎn)A關(guān)于平面xOz對(duì)稱,求點(diǎn)B與點(diǎn)C之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx-1,其中a∈(0,4),b∈R.
(1)當(dāng)a=1時(shí),解不等式f(x)+f(-x)<3x;
(2)設(shè)b<0,當(dāng)x∈[-
1
a
,0]
時(shí),f(x)的值域是[-
3
a
,0]
,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案