【題目】函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(1)=0,當(dāng)x<0時,xf′(x)+f(x)>0,則使得f(x)<0成立的x的取值范圍是( 。
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)

【答案】B
【解析】解:設(shè)g(x)=xf(x),則g′(x)=xf′(x)+f(x),
∵當(dāng)x<0時,xf′(x)+f(x)>0,
∴則當(dāng)x<0時,g′(x)>0,
∴函數(shù)g(x)=xf(x)在(﹣∞,0)上為增函數(shù),
∵函數(shù)f(x)是奇函數(shù),∴g(﹣x)=(﹣x)f(﹣x)=(﹣x)[﹣f(x)]=xf(x)=g(x),
∴函數(shù)g(x)為定義域上的偶函數(shù),
由f(1)=0得,g(1)=0,函數(shù)g(x)的圖象大致如右圖:
∵不等式f(x)<0<0,

由函數(shù)的圖象得,﹣1<x<0或x>1,
∴使得f(x)<0成立的x的取值范圍是:(﹣1,0)∪(1,+∞),
故選:B.

根據(jù)題意構(gòu)造函數(shù)g(x)=xf(x),由求導(dǎo)公式和法則求出g′(x),結(jié)合條件判斷出g′(x)的符號,即可得到函數(shù)g(x)的單調(diào)區(qū)間,根據(jù)f(x)奇函數(shù)判斷出
g(x)是偶函數(shù),將不等式進(jìn)行轉(zhuǎn)化,由圖象求出不等式成立時x的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知,分別為橢圓C:的左、右焦點,點在橢圓C上.

(1)求的最小值;

(2)已知直線l與橢圓C交于兩點A、B,過點且平行于直線l的直線交橢圓C于另一點Q,問:四邊形PABQ能否成為平行四邊形?若能,請求出直線l的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b∈R)滿足條件:①當(dāng)x∈R時,f(x)的最大值為0,且f(x﹣1)=f(3﹣x)成立;②二次函數(shù)f(x)的圖象與直線y=﹣2交于A、B兩點,且|AB|=4
(Ⅰ)求f(x)的解析式;
(Ⅱ)求最小的實數(shù)n(n<﹣1),使得存在實數(shù)t,只要當(dāng)x∈[n,﹣1]時,就有f(x+t)≥2x成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體ABCDPE的底面ABCD是平行四邊形,AD=AB=2,=0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2.
(1)若棱AP的中點為H,證明:HE∥平面ABCD;
(2)求二面角A﹣PB﹣E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖的程序圖的算法思路中是一種古老而有效的算法﹣﹣輾轉(zhuǎn)相除法,執(zhí)行改程序框圖,若輸入的m,n的值分別為30,42,則輸出的m=(  )

A.0
B.2
C.3
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是矩形,SD=DC=2AD,側(cè)棱SD⊥底面ABCD,點E是SC的中點,點F在SB上,且EF⊥SB.
(1)求證:SA∥平面BDE;
(2)求證SB⊥平面DEF;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A﹣{1,2,3,4,5,6,7,8,9),在集合A中任取三個元素,分別作為一個三位數(shù)的個位數(shù),十位數(shù)和百位數(shù),記這個三位數(shù)為a,現(xiàn)將組成a的三個數(shù)字按從小到大排成的三位數(shù)記為I(a),按從大到小排成的三位數(shù)記為D(a)(例如a=219,則I(a)=129,D(a)=921),閱讀如圖所示的程序框圖,運行相應(yīng)的程序,任意輸入一個a,則輸出b的值為(  )

A.792
B.693
C.594
D.495

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(2,5)和(8,3)是函數(shù)y=﹣k|x﹣a|+b與y=k|x﹣c|+d的圖象僅有的兩個交點,那么a+b+c+d的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)平面點集A={(x,y)|(x﹣1)2+(y﹣1)2≤1},B={(x,y)|(x+1)2+(y+1)2≤1},C={(x,y)|y﹣≥0},則(A∪B)∩C所表示的平面圖形的面積是

查看答案和解析>>

同步練習(xí)冊答案