設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,且S6=3,S12=-30,數(shù)列{bn}滿足bn=
4Sn
n
,求數(shù)列{bn}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件利用等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式,求出首項(xiàng)和公差,由此能求出Sn.再根據(jù)數(shù)列{bn}滿足bn=
4Sn
n
,求得數(shù)列{bn}是首項(xiàng)為1,公差為-2的等差數(shù)列,最后利用等差數(shù)列的求和公式求得
解答: 解:等差數(shù)列{an}的公差為d,則Sn=na1+
1
2
n(n-1)d,
∵S6=3,S12=-30,
6a1+15d=3
12a1+66d=-30
,
解得
a1=3
d=-1

∴Sn=3+
1
2
n(n-1)×(-1)=-
1
2
n2+
7
2
n
,
bn=
4Sn
n
=14-2n,
∵bn+1-bn=-2,
∴數(shù)列{bn}是首項(xiàng)為1,公差為-2的等差數(shù)列,
∴Tn=12n+
1
2
n(n-1)×(-2)=13n-n2
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給定兩個(gè)向量
a
=(3,4),
b
=(x,1),若
a
b
,則x的值等于(  )
A、-
4
3
B、-
3
4
C、
3
4
D、
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線a、b是相互不垂直的異面直線,平面α、β滿足a?α,b?β,且α⊥β,則這樣的平面α、β( 。
A、只有一對(duì)B、有兩對(duì)
C、有無數(shù)對(duì)D、不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=x3與y=(
1
2
x-2的圖象交點(diǎn)為(x0,y0),則x0所在的區(qū)間是( 。
A、(0,1)
B、(3,4)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=
2
3
x3+2x2+ax+a2
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)存在兩個(gè)極值點(diǎn)x1、x2,求f(x1)+f(x2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,C、D是以AB為直徑的圓上兩點(diǎn),AB=2AD=2
3
,AC=BC,F(xiàn)是AB上一點(diǎn),且AF=
1
3
AB,將圓沿直徑AB折起,使點(diǎn)C在平面ABD的射影E在BD上,已知CE=
2


(1)求證:AD⊥平面BCE;
(2)求三棱錐A-CFD的體積.
(3)異面直線AC與BD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=mx3-3x+4,m∈R.
(Ⅰ)已知f(x)在區(qū)間(m,+∞)上遞增,求實(shí)數(shù)m的取值范圍;
(Ⅱ)存在實(shí)數(shù)m,使得當(dāng)x∈[0,2]時(shí),2≤f(x)≤6恒成立,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明當(dāng)a∈(0,+∞)時(shí),2a-aln4a2≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項(xiàng)和是Sn,滿足條件a6是a2,S4的等差中項(xiàng),且數(shù)列首項(xiàng)為1.
(1)求等差數(shù)列{an}的公差d;
(2)設(shè)bn=
1
S
 
n
,數(shù)列{bn}的前n項(xiàng)和為Tn,是否存在實(shí)數(shù)λ,使得Tn<λan+1對(duì)一切n∈N*都成立?若存在,求出λ的取值范圍,若不存在說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案