【題目】已知橢圓C: 的上、下焦點(diǎn)分別為F1 , F2 , 上焦點(diǎn)F1到直線(xiàn) 4x+3y+12=0的距離為3,橢圓C的離心率e= .
(I)若P是橢圓C上任意一點(diǎn),求| || |的取值范圍;
(II)設(shè)過(guò)橢圓C的上頂點(diǎn)A的直線(xiàn)l與橢圓交于點(diǎn)B(B不在y軸上),垂直于l的直線(xiàn)與l交于點(diǎn)M,與x軸交于點(diǎn)H,若 =0,且| |=| |,求直線(xiàn)l的方程.
【答案】解:(Ⅰ)由已知橢圓C方程為 ,
設(shè)橢圓上焦點(diǎn)F1(0,c),由F1到直線(xiàn)4x+3y+12=0的距離為3,
得 ,又橢圓C的離心率 ,所以 ,又a2=b2+c2,
求得a2=4b2=3.橢圓C方程為 ,
所以1≤|PF1|≤3,設(shè) , =﹣(t﹣2)2+4,t=2時(shí),
最大值為4,t=1或3時(shí), 最小值為3,
取值范圍是[3,4].…(5分)
(Ⅱ)設(shè)直線(xiàn)l的斜率為k,
則直線(xiàn)l方程y﹣2=kx,設(shè)B(xB,yB),A(xA,yA),
由 ,得(3k2+4)x2+12kx=0,
則有xA=0, ,所以 ,
所以 , ,
由已知 ,
所以 ,解得 , ,
,yM=1,MH的方程 ,聯(lián)立 ,
,解得 ,
所以線(xiàn)l的方程為
【解析】(Ⅰ)設(shè)橢圓上焦點(diǎn)F1(0,c),由F1到直線(xiàn)4x+3y+12=0的距離為3,結(jié)合橢圓C的離心率 ,求出橢圓C方程,推出1≤|PF1|≤3,設(shè) , =﹣(t﹣2)2+4,t=2時(shí),然后求解 取值范圍.(Ⅱ)設(shè)直線(xiàn)l的斜率為k,直線(xiàn)l的方程y﹣2=kx,設(shè)B(xB,yB),A(xA,yA),聯(lián)立直線(xiàn)與橢圓方程,求出A,B坐標(biāo),利用 ,求出H、M的坐標(biāo),推出k即可求出直線(xiàn)l的方程.
【考點(diǎn)精析】本題主要考查了橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)點(diǎn),需要掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為 (φ為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為ρ=4sinθ
(Ⅰ)求曲線(xiàn)C1的普通方程和C2的直角坐標(biāo)方程;
(Ⅱ)已知曲線(xiàn)C3的極坐標(biāo)方程為θ=α,0<α<π,ρ∈R,點(diǎn)A是曲線(xiàn)C3與C1的交點(diǎn),點(diǎn)B是曲線(xiàn)C3與C2的交點(diǎn),且A,B均異于原點(diǎn)O,且|AB|=4 ,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知O為坐標(biāo)原點(diǎn),橢圓的左、右焦點(diǎn)分別為,離心率,橢圓上的點(diǎn)到焦點(diǎn)的最短距離為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)T為直線(xiàn)上任意一點(diǎn),過(guò)的直線(xiàn)交橢圓C于點(diǎn)P,Q,且為拋物線(xiàn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù)f(x)= (其中e為自然對(duì)數(shù)的底數(shù)),h(x)=x﹣ .
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)設(shè)g(x)= ,.已知直線(xiàn)y= 是曲線(xiàn)y=f(x)的切線(xiàn),且函數(shù)g(x)在(0,+∞)上是增函數(shù).
(i)求實(shí)數(shù)a的值;
(ii)求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= sinxcosx﹣cos2x﹣ .
(Ⅰ)求函數(shù)f(x)的對(duì)稱(chēng)軸方程;
(Ⅱ)將函數(shù)f(x)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,然后再向左平移 個(gè)單位,得到函數(shù)g(x)的圖象.若a,b,c分別是△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,a=2,c=4,且g(B)=0,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y2=2x和圓x2+y2﹣x=0,傾斜角為 的直線(xiàn)l經(jīng)過(guò)拋物線(xiàn)的焦點(diǎn),若直線(xiàn)l與拋物線(xiàn)和圓的交點(diǎn)自上而下依次為A,B,C,D,則|AB|+|CD|= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(1﹣m)lnx+ ﹣x,m∈R且m≠0.
(Ⅰ)當(dāng)m=2時(shí),令g(x)=f(x)+log2(3k﹣1),k為常數(shù),求函數(shù)y=g(x)的零點(diǎn)的個(gè)數(shù);
(Ⅱ)若不等式f(x)>1﹣ 在x∈[1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為( )
A.20π
B.24π
C.28π
D.32π
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為研究男女同學(xué)空間想象能力的差異,孫老師從高一年級(jí)隨機(jī)選取了20名男生、20名女生,進(jìn)行空間圖形識(shí)別測(cè)試,得到成績(jī)莖葉圖如下,假定成績(jī)大于等于80分的同學(xué)為“空間想象能力突出”,低于80分的同學(xué)為“空間想象能力正常”.
(1)完成下面2×2列聯(lián)表,
空間想象能力突出 | 空間想象能力正常 | 合計(jì) | |
男生 |
|
| |
女生 |
| ||
合計(jì) |
|
(2)判斷是否有90%的把握認(rèn)為“空間想象能力突出”與性別有關(guān);
(3)從“空間想象能力突出”的同學(xué)中隨機(jī)選取男生2名、女生2名,記其中成績(jī)超過(guò)90分的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望. 下面公式及臨界值表僅供參考:
P(X2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com